Все ребра данного нам тетраэдра разные. Но они все даны. Проведены медианы СМ - в треугольнике АВС и КМ - в треугольнике ВКА. Следовательно, чтобы найти длину медианы КМ, необходимо воспользоваться формулой для длины медианы. Формула: Ma=√(2b²+2c²-a²). Заметим, что АК и ВК - медианы в треугольниках ADC и BDC соответственно. Тогда АК=√(2АС²+2AD²-CD²) или АК=√(2b²+2a1²-c1²). BK= √(2BC²+2BD²-CD²) или BК=√(2a²+2b1²-c1²). И в треугольнике ВКА искомая медиана МК=√(2АК²+2BК²-АВ²). Подставим найденные значения: МК=√(2(2b²+2a1²-c1²)+2(2a²+2b1²-c1²)-с²) =√((4a²+4b²-с²)+4(a1²+b1²-c1²)).
В пространстве существуют точки, что принадлежат данной плоскости и точки, что ей не принадлежат.(аксиома) Пусть точка А - точка, которая не принадлежит плоскости альфа (а значит не принадлежит и пряммой а) Через пряммую а и точку, что не лежит на пряммой можно провести плоскость. Проводим такую плоскость Бэта. Пряммая а принадлежит обоим плоскостям Альфа и Бэта, но эти плоскости разные , так как точка А плоскости Бэта не принадлежит плоскости Альфа. Таким образом мы доказали требуемое утверждение
Проведены медианы СМ - в треугольнике АВС и КМ - в треугольнике ВКА. Следовательно, чтобы найти длину медианы КМ, необходимо воспользоваться формулой для длины медианы.
Формула: Ma=√(2b²+2c²-a²).
Заметим, что АК и ВК - медианы в треугольниках ADC и BDC соответственно.
Тогда АК=√(2АС²+2AD²-CD²) или АК=√(2b²+2a1²-c1²).
BK= √(2BC²+2BD²-CD²) или BК=√(2a²+2b1²-c1²).
И в треугольнике ВКА искомая медиана МК=√(2АК²+2BК²-АВ²).
Подставим найденные значения:
МК=√(2(2b²+2a1²-c1²)+2(2a²+2b1²-c1²)-с²) =√((4a²+4b²-с²)+4(a1²+b1²-c1²)).