а) ∆АВС - рівнобедрений (АВ = ВС).
Нехай зовнішній кут 130° - це кут при вершині.
∟DBC = 130°, тоді ∟DBC = ∟A + ∟C.
∟A + ∟C = 130°. ∟A = ∟C = 130° : 2 = 65° (кути при ocнові).
∟B = 180° - ∟DBC. ∟B = 180° - 130°; ∟B = 50°.
Biдповідь: 65", 65°, 50°.
б) ∆АВС - рівнобедрений (АВ = ВС).
Нехай зовнішній кут 130° - це кут при основі ∟BCD = 130°,
тоді ∟BCD + ∟BCA = 180°.
∟BCA = 180° - 130° = 50°; ∟BCA = ∟BAC = 50°
(кути при ocновi рівнобедреного трикутника).
∟BAC + ∟BCA + ∟B = 180°.
∟B = 180° - (50° + 50°) = 180° - 100° = 80°.
Biдповідь: 50°, 50°, 80°.
ответил 08 Янв, 17 от discere
Назовем соприкосновение наклонной и плоскости точкой А, а соприкосновение плоскости с перпендикуляром В. Рассмотрим треугольник MAB, угол M = 60 градусов по условию, угол B = 90 градусов т.к. "перпендикуляр". Третий угол А по теореме о сумме углов треугольника = 180 - 60 - 90 = 30.
Теперь нам известны все углы и одна сторона MB = 20см, остается "решить треугольник".
Т.к. знаем все углы, воспользуемся теоремой Синусов: MB/sinA = AB/sinM = AM/sinB.
Подставим известное: 20/sin30 = AB/sin60 = AM/sin90. Сдесь 2 неизвестных, по условию нам нужно найти длину наклонной AM. Выразим её из равенства:
AM = sin90*20/sin30
AM = 1*20/0.5 = 20*2 = 40 см.
ответ: 40см
Объяснение:
Нехай трикутник АВС (кут С = 90градусів), кут В = 53 градусів, АВ = 12см
Проведемо з прямого кута С до гіпотенузи висоту СК.
Знайдемо Кут А, так як прямий кут це 90 градусів, то кут А буде дорівнювати:
кут С = 90градусів - 53 градусів =37 градусів.
Тепер дещо про синусів и косинусів
Синус кута - це відношення протилежного катета до гіпотенузи
Косинус кута - відношення прилеглого катета до гіпотенузи.
Звідси,
\cos B= \frac{BC}{AB} \\ BC=\cos B\cdot AB=\cos53\cdot 12\approx 7.2218
Тоді другий катет
AC= AB\cdot \sin 53а=12\cdot \sin53а\approx 9.5836
З прямотутного трикутника СКВ
CK=BC\cdot \sin 53а=7.2218*\sin53\approx 5.7676
Площа прямокутного трикутника обчислюється за формулою
S= \frac{AC+BC}{2} = \frac{7.2218+9.5836}{2} \approx 34.6054