Прямая, параллельная стороне DM треугольника DKM, пересекает его сторону DK в точке P, а сторону MK — в точке N. Найдите площадь трапеции DPNM, если KP = 8 см, PD = 20 см, а площадь треугольника DKM равна 98 см2.
1) Прямая, параллельная стороне треугольника, отсекает от него подобный треугольник. В нашем случае DM║PN, следовательно, ΔPKN~ΔDKM.
2) ∠PNK = ∠DMN (как накрест лежащие при параллельных прямых), поэтому, для ΔPKN и ΔDKM противолежащие этим углам стороны - сходственные стороны (PK и DK - сходственные стороны).
3) Отношение сходственных сторон подобных треугольников равно коэффициенту подобия.
То есть :
Коэффициент подобия = 3,5.
4) Отношение площадей подобных треугольников равно квадрату коэффициента подобия.
Биологические ресурсы. Атлантический океан даёт 2/5 мирового улова и доля его с годами уменьшается. В субантарктических и антарктических водах промысловое значение имеют нототении, путассу и другие, в тропическом поясе — макрель, тунцы, сардина, в областях холодных течений — анчоусы, в умеренных широтах северного полушария — сельдь, треска, пикша, палтус, морской окунь. В 1970-х годах вследствие перелова некоторых видов рыб объёмы промысла резко сократились, но после введения строгих лимитов рыбные запасы понемногу восстанавливаются. В бассейне Атлантического океана действует несколько международных конвенций по рыболовству, ставящих своей целью эффективное и рациональное использование биологических ресурсов, на основе применения научно обоснованных мер по регламентации промысла.
Рассмотрим ΔАВD. Он - прямоугольный, так как ВD⊥АВ⇒∠DВА=90°. Найдем ∠АDВ по теореме о сумме ∠Δ: ∠АDВ=180°-60°-90°=30° Рассмотрим ∠ВDА и ∠DВС, учитывая, что ВС∫∫АD(по определению трапеции): эти углы накрест лежащие при парал. прям. и сек. ⇒ они равны(по св-ву парал. прям) ⇒ ∠АDВ=∠СВD=30°. При этом, ВD - так же биссектриса ∠D⇒∠АDВ=∠ВDС=30° ⇒ ∠D=60° ⇒ АВСD - равнобедренная трапеция(по признаку) Найдем ∠DСВ. Рассмотрим ΔВСD: ∠В=∠D=30 ⇒ найдем ∠С по теореме о сумме ∠Δ: 180°-60°=120° ∠DCВ=∠АВС(по опр. равноб. трап.) ⇒ АВС=120° ответ: 60°, 60°, 120°, 120°
Дано:
ΔDKM.
P ∈ DK, N ∈ MK.
DM║PN.
KP = 8 см.
PD = 20 см.
S(ΔDKM) = 98 см².
Найти:
S(DPNM) = ?
1) Прямая, параллельная стороне треугольника, отсекает от него подобный треугольник. В нашем случае DM║PN, следовательно, ΔPKN~ΔDKM.
2) ∠PNK = ∠DMN (как накрест лежащие при параллельных прямых), поэтому, для ΔPKN и ΔDKM противолежащие этим углам стороны - сходственные стороны (PK и DK - сходственные стороны).
3) Отношение сходственных сторон подобных треугольников равно коэффициенту подобия.
То есть :
Коэффициент подобия = 3,5.
4) Отношение площадей подобных треугольников равно квадрату коэффициента подобия.
То есть :
S(ΔPKN) = 8 cм².
5) S(DPNM) = S(ΔDKM)-S(ΔPKN) = 98 см²-8 см² = 90 см² (по свойству площадей многоугольников).
ответ: 90 см².