В правильной четырехугольной пирамиде S.ABCD точка оцентр основания S- вершина SD = 10:u, so = 6см Найдите боковое ребро плошадь поверхности и обьем пирамиды.
Средняя линия равнобедренной трапеции ABCD (BC||AD) равна 12 см. Диагональ AC образует с основанием угол 60. Найдите диагональ трапеции
Объяснение:
Т.к. средняя линия равна полусумме оснований трапеции , то сумма оснований будет равна двум длинам средней линии, те ВС+АD=2*12=24(cм)
Проведем ВТ||АС. Тогда АСВТ- параллелограмм , по определению параллелограмма⇒ ВС=АТ и АТ+АD=24
Тк ∠САD=60° и ВТ||АС , то ∠Т=60° как соответственный при секущей ТD.
В равнобедренной трапеции диагонали равны ⇒ВD=AC=BT ⇒ΔBTD- равнобедренный и тогда третий угол равен ∠ТВD=180°-60°-60°=60° ⇒ΔBTD- равносторонний и ВD=BT=AD=24см.
Пусть ABCD - данный параллелограмм, а A', B', C', D' - точки, в которые переходят A, B, C, D. Т.к. при параллельном переносе плоскость переходит в параллельную ей плоскость (или в себя), то плоскость α'В'С'D' параллельна плоскости αВCD.Т. к. при параллельном переносе точки смещаются по параллельным (или совпадающим) прямым на одно и то же расстояние, то AA' || BB' || CC' || DD' и AA' = BB' = CC' = DD'.Так что в четырехугольнике AA'D'D противолежащие стороны параллельны и равны, а, значит, AA'D'D — параллелограмм. Тогда A'D' = AD и A'D' || AD.Аналогично A'B' = AB и A'B' || AB; C'D' = CD и C'D' || CD; B'C' = BC и B'C' || BC.Т. к. две прямые, параллельные третьей, параллельны, то получаем, что A'D' || B'C', A'B' || C'D'.А, значит, A'B'C'D' — параллелограмм, равный параллелограмму ABCD (т.к. соответствующие стороны равны). Что и требовалось доказать.
Средняя линия равнобедренной трапеции ABCD (BC||AD) равна 12 см. Диагональ AC образует с основанием угол 60. Найдите диагональ трапеции
Объяснение:
Т.к. средняя линия равна полусумме оснований трапеции , то сумма оснований будет равна двум длинам средней линии, те ВС+АD=2*12=24(cм)
Проведем ВТ||АС. Тогда АСВТ- параллелограмм , по определению параллелограмма⇒ ВС=АТ и АТ+АD=24
Тк ∠САD=60° и ВТ||АС , то ∠Т=60° как соответственный при секущей ТD.
В равнобедренной трапеции диагонали равны ⇒ВD=AC=BT ⇒ΔBTD- равнобедренный и тогда третий угол равен ∠ТВD=180°-60°-60°=60° ⇒ΔBTD- равносторонний и ВD=BT=AD=24см.