Если ВА⊥АD, то ∠А=90(по опр.перпендикуляра), и ∠В=90, так как ВА⊥ВС, так как ВС∫∫АD(по св-ву парал. прямых) ⇒ АВСD - прямоугольная трапеция( по опр.). Проведем высоту СМ. И рассмотрим получившийся четырехугольник ВАМС, это прямоугольник, так как ∠А=∠В=90, и ∠М=∠С=90(по опр. высоты) ⇒ВА=СМ=6, и ВС=АМ=6. Рассмотрим ΔСМD: СМ мы провели так, что она разделила ∠ВСD=135, на ∠МСВ=90 и ∠МСD=45. Если ∠МСD=45, а ∠СМD=90(по опр. высоты), то ∠СDM=45(по теореме о сумме ∠ в Δ) ⇒ ΔСМD - равнобедренный (по признаку) ⇒ СМ=MD=6(по опр. равноб. Δ) Найдем основание трапеции: АМ+МD 6+6=12
Вписанный в правильную пирамиду шар касается основания пирамиды (в его центре и апофем пирамиды. То есть в сечении пирамиды по ее апофемам мы имеем равнобедренный треугольник со сторонами, равными апофкмам и основанием, равным стороне квадрата (основания). В этот треугольник вписана окружность (сечение шара). Есть формула радиуса вписанной в треугольник окружности: r=S/p, где S- площадь треугольника, а р - его полупериметр. Найдем высоту пирамиды по Пифагору: √(10²-6²)=8 (10 - апофема, 6 - половина стороны квадрата). Тогда площадь треугольника равна S=8*6=48. Тогда радиус вписанной в треугольник окружности равен r=S/p= 48/16 = 3. Это и есть радиус вписанного в пирамиду шара. Второй вариант: по формуле радиуса вписанной в равнобедренный треугольник окружности: r=(b/2)*√[(2a-b)/(2a+b)]. В нашем случае: r=6*√(1/4) = 3. Объем шара находим по формуле: V=(4/3)*π*r³ =36π. ответ V = 36π.
DC = 10√3
Объяснение:
1) AB = BO = 5 по условию, =>AO = 5 + 5 = 10.
2) AO = OC как радиусы, => OC = 5, а BC = BO + OC = 5 + 10 = 15
3) По условию DE ⊥ AC, но т.к. AC - диаметр, то по теореме о перпендикулярных диаметре и хорде, DB = BE.
4) По теореме по пересекающихся хордах AB*BC = DB*BC. Пусть DB = x, тогда BE = x, =>
5*15 = x*x
x² = 75
x = √75 = DB
5) ΔDBC - прямоугольный, тогда по теореме Пифагора:
DC² = DB² + BC² = (√75)² + 15² = 75 + 225 = 300
DC = √300 = √3*100 = 10√3