40 см и 25 см
Объяснение:
Дано:
Прямоугольный треугольник АВС (угол С - прямой):
гипотенуза АВ = 130 см
катет ВС = 104 см
Найти:
длины отрезков, на которые биссектриса меньшего острого угла делит медиану, проведенную к гипотенузе.
Решение.
1) По теореме Пифагора найдём длину катета АС:
АС = √(АВ²-ВС²) = √(130²-104²) = √(16900-10816) = √6084= 78 см
2) В треугольнике меньшая сторона лежит против меньшего угла. Это значит, что меньшим острым углом является ∠В, против которого лежит катет АС.
3) Выполним построение.
Из угла В проведём биссектрису, которая пересечет катет АС в точке Е. Из вершины прямого угла С проведём медиану к гипотенузе АВ, и точку пересечения медианы со стороной АВ обозначим D, а точку пересечения медианы CD с биссектрисой ВЕ обозначим F.
В принятых обозначениях необходимы найти DF и FC.
4) Теорема. В прямоугольном треугольнике медиана, проведённая из вершины прямого угла к гипотенузе, равна половине гипотенузы.
Следовательно:
DC = АВ : 2 = 130 : 2 = 65 см
Так как точка D является серединой АВ, согласно построению, то:
BD = АВ : 2 = 130 : 2 = 65 см
5) Теорема. Биссектриса данного угла треугольника делит противолежащую сторону на части, пропорциональные прилежащим сторонам.
Следовательно:
DF : FC = DB : BC (1)
Так как DC = DF + FC = 65 cм, то
DF = DC - FC = 65-FC (2)
Подставим (2) в (1), получим:
(65-FC) : FC = DB : BC
(65-FC) : FC = 65 : 104
65 · 104 - 104FC = 65FC
6760 = 65FC + 104FC
169 FC = 6760
FC = 6760 : 169 = 40 см
Отсюда DF = 65-FC = 65 - 40 = 25 см
ответ: биссектриса меньшего острого угла делит медиану, проведённую к гипотенузе, на два отрезка длиной (считая от вершины прямого угла) 40 см и 25 см.
SO=√(SB²-BO²) = √(25-81/4) =√19/2.Рассмотрим треугольник ASO и
секущую FC в нем. По теореме Менелая имеем:(AF/FS)*(SK/KO)*(OC/CA)=1.
Подставим имеющиеся значения, приняв отрезок ОК за Х:
(1/4)*((√19/2-Х)/Х)*(1/2)=1. Отсюда Х=√19/18.
Заметим, что точка К - пересечение прямых FC и SO.
Итак, КО=√19/18. Тогда в треугольнике КЕО:
tg(<KEO)=КО/ЕО=КО/(ВО-ВЕ)=(√19/18)/(1/2)=√19/9.
В треугольнике OSD тангенс угла SDO:
tg(SDO)=SO/OD или tg(SDO)=(√19/2)/(9/2)=√19/9.
Итак, в треугольнике EQD углы QED и QDO при основании равны,
a <QDO=<SBD в равнобедренном треугольнике ВSD.
Следовательно, треугольники ВSD и EQD подобны и EQ параллельна BS. Прямая EQ принадлежит плоскости CEF, значит плоскость CEFпараллельна ребру BS, что и требовалось доказать.
б). Треугольники ВSD и EQD подобны (доказано выше), поэтомуEQ/BS=DE/DB, отсюда EQ=BS*DE/DB или EQ=5*5/9=25/9.Тогда в равнобедренном треугольнике EQD высота QH=√(EQ²-(OD/2)²) или QH=√475/18=5√19/18 ≈ 1,2.