Пусть есть хорда АВ и точка С - ее середина. Проведем через центр окружности - точку О и центр хорды - точку С диаметр МН ( точки М и Н - лежат на окружности ). Проведем через точки М и Н две прямые а и в, касательные к окружности. Так как а и в касательные, построенные на диаметре МН, то а и в перпендикулярны к МН.
Докажем, что хорда АВ перпендикулярна МН. Рассмотрим треугольники АСО и ВСО. Они равны, так как АО = ВО = R, АС = ВС ( по условию задачи точка С - середина АВ ), сторона СО - общая. Треугольник АВО - равнобедренный с основанием АВ, СО - медиана, проведенная к АВ. В равнобедренном треугольнике медиана проведенная к основанию является высотой, а значит АВ перпендикулярна к СО и следовательно к МН.
Прямые а, в и хорда АВ перпендикулярны к диаметру МН, а следовательно прямые а, в и хорда АВ параллельны между собой.
Решение. 1. Из верхнего угла пересечения верхнего меньшего основания и боковой стороны опускаем перпендикуляр на нижнее большее основание - этот перпендикуляр является высотой трапеции. Нужно найти значение высоты. 2. По наклонной боковой стороне получается равнобедренный треугольник (углы 45, 90 и 45 градусов) с катетами по нижнему основанию (5-1=4 см) и катетом-высотой равным также 4 см, так как в равнобедренном треугольники катеты равны друг другу. 3. вычисляем площадь трапеции (полусумма оснований умноженная на высоту) (5+1):2×4 = 6:2×4 = 3×4 = 12 (см²) ответ. площадь трапеции 12 см² (если размеры в сантиметрах)
Відповідь:
Прямые а, в и хорда АВ параллельны между собой.
Пояснення:
Пусть есть хорда АВ и точка С - ее середина. Проведем через центр окружности - точку О и центр хорды - точку С диаметр МН ( точки М и Н - лежат на окружности ). Проведем через точки М и Н две прямые а и в, касательные к окружности. Так как а и в касательные, построенные на диаметре МН, то а и в перпендикулярны к МН.
Докажем, что хорда АВ перпендикулярна МН. Рассмотрим треугольники АСО и ВСО. Они равны, так как АО = ВО = R, АС = ВС ( по условию задачи точка С - середина АВ ), сторона СО - общая. Треугольник АВО - равнобедренный с основанием АВ, СО - медиана, проведенная к АВ. В равнобедренном треугольнике медиана проведенная к основанию является высотой, а значит АВ перпендикулярна к СО и следовательно к МН.
Прямые а, в и хорда АВ перпендикулярны к диаметру МН, а следовательно прямые а, в и хорда АВ параллельны между собой.