DOA = 70°. Дано в задаче.
BOC = DOA = 70°. Вертикальные углы равны (1).
DOC = 180° - 70° - 110°. Смежные углы в сумме дают 180° (2).
AOB = DOC = 110°. (1).
ODC = (180° - 110°) / 2 = 35°. Сумма углов треугольника равна 180° (3). Если треугольник равнобедренный, то углы при его основаниях равны (4).
ADO = 90° - 35° = 55°. Два угла составляют прямой угол (5).
OAD = ADO = 55°. (4).
OAB = 90° - 55° = 35°. (5).
OBA = OAB = 35°. (4).
OBC = 90° - 35° = 55°. (5).
OCB = OBC = 55°. (4).
Все остальные углы состоят из других и их можно посчитать по сумме. Например:
DAB = DAO + BAO = 55° + 35° = 90°.
Тогда имеем уравнение: {[180°(n-2)]:n}*5 - {[180°(n-2)]:n}*(n-5) = 270.
Это уравнение приводится к квадратному:
2n²-21n+40=0, откуда n1=8, n2=2,5 (не удовлетворяет условию).
Итак, ответ: число сторон искомого правильного многоугольника равно 8.
Проверка: Один угол восьмиугольника равен 180*6/8 = 135°. Тогда сумма пяти углов равна 135*5=675°, а сумма трех оставшихся углов равна 135*3=405°. Разница равна 675°-405°=270°