Параллелограмм - это четырехугольник, у которого противолежащие стороны попарно параллельны.
Если мы докажем, что BC║AD и AB║CD, то докажем, что ABCD параллелограмм.
1) ∠DBC = ∠BDA по условию, а это внутренние накрест лежащие углы при прямых BC и AD и секущей BD ⇒ BC║AD. (если внутренние накрест лежащие угли при двух прямых и секущей равны, то эти прямые параллельны).
2) ΔBOC = ΔAOD по второму признаку (стороне и двум углам):
BO = OD по условию, ∠OBC = ∠ODA по условию, ∠BOC = ∠AOD вертикальные углы.
В равных треугольниках соответствующие стороны равны. AO = OC
3) ΔAOB = ΔCOD по первому признаку:
BO = OD по условию, AO = OC по доказанному, ∠AOB = ∠COD - вертикальные углы.
Из равенства треугольников следует равенство соответствующих углов.
∠BAO = ∠DCO, это внутренние накрест лежащие углы при прямых AB и CD и секущей AC. ⇒ AB ║CD
4) В четырехугольнике ABCD AD║BC и AB ║ CD. Четырехугольник ABCD параллелограмм.
Доказано.
Образующая AS, как катет равнобедренного прямоугольного треугольника ASВ c прямым углом при вершине S и с гипотенузой АВ=6√2, равна 6 см
Высота SО, как катет прямоугольного треугольника ASО с прямым углом при основании высоты, равна половине АS, так как противолежит углу 30°
h=AS:2=3 см
Радиус r основания конуса найдем из треугольника АSO. Можно по теореме Пифагора или через косинус угла SАО.
АО=r=АS·cos(30°)=6·√3):2=3√3
Объем конуса равен одной трети произведения площади основания на его высоту и находится по формуле:
V= π r² H:3
V==π 27·3 : 3=27π см³