В целом поверхность волнистая, с холмистыми участками и сравнительно глубоко врезанными речными долинами.
Большая часть территории находится в пределах Смоленской, Духовщинской (до 282 м) и Вяземской возвышенностей. Максимальная отметка региона — 321 м у деревни Марьино Вяземского района. На северо-западе — моренные гряды (Слободская (до 241 м) и другие), участки Витебской (до 232 м) и Валдайской возвышенностей. На востоке участок Московской возвышенности (высоты до 255 м).
Низины — Вазузская, Верхнеднепровская, Березинская; Приднепровская низменность на крайнем юге области с абсолютными отметками от 175 до 180 м и Прибалтийская в северо-западной части где находится самая низкая отметка — 141 м по берегу реки Западная Двина на границе с Белоруссией.
На рисунке обозначены:
ABC - Основание пирамиды
OS - Высота
KS - Апофема
OK - радиус окружности, вписанной в основание
AO - радиус окружности, описанной вокруг основания правильной треугольной пирамиды
SKO - двугранный угол между основанием и гранью пирамиды (в правильной пирамиде они равны)
Важно. В правильной треугольной пирамиде длина ребра (на рисунке AS, BS, CS ) может быть не равна длине стороны основания (на рисунке AB, AC, BC). Если длина ребра правильной треугольной пирамиды равна длине стороны основания, то такая пирамида называется тетраэдром (см. ниже).
Свойства правильной треугольной пирамиды:
боковые ребра правильной пирамиды равны
все боковые грани правильной пирамиды являются равнобедренными треугольниками
в правильную треугольную пирамиду можно как вписать, так и описать вокруг неё сферу
если центры вписанной и описанной вокруг правильной треугольной пирамиды, сферы совпадают, то сумма плоских углов при вершине пирамиды равна π (180 градусов) , а каждый из них соответственно равен π / 3 (пи делить на 3 или 60 градусов ).
площадь боковой поверхности правильной пирамиды равна половине произведения периметра основания на апофему
вершина пирамиды проецируется на основание в центр правильного равностороннего треугольника,, который является центром вписанной окружности и точкой пересечения медиан