2,5
Объяснение:
Назовём точки как на рисунке.
Пусть периметр прямоугольника АВНЕ равен 7.
P(прямоугольника)=(а+б)*2,
где а и б стороны прямоугольника. Следовательно а+б=P÷2; тоесть АВ+АЕ=7÷2; АВ+АЕ=3,5
Пусть периметр прямоугольника CDEH равен 8.
P(прямоугольника)=(а+б)*2,
где а и б стороны прямоугольника
Следовательно а+б=P÷2; тоесть CD+DE=8÷2; CD+DE=4.
АЕ+DE=AD. Тогда АВ+АD+CD=3,5+4=7,5.
АВ, AD и CD – стороны квадрата ABCD
Все стороны квадрата равны, следовательно одна сторона равна 7,5÷3=2,5
ответ: 2,5
Объяснение:
У ромба 2 пары равных внутренних углов, сумма которых равна 360°.
Пусть тупой угол равен 2х, тогда острый будет х. Получаем: 2*2х+2х=360
6х=360
х=60.
Значит острый угол ромба равен 60°, а тупой 120°.
Площадь ромба равна половине произведения его диагоналей.
Найдем диагонали.
Известно, что диагонали ромба делят внутренние углы пополами и пересекаются под прямым углом. Исходя из этого, приняв, что диагонали ромба пересекаются в точке О и ∠АВС - тупой, рассмотрим ΔВСО.
Он прямоугольный с ∠ОСВ= 30° и ∠ОВС=60° при гипотенузе ВС. Значит его катет ВО = ВС·sin30° = 3√3,
катет СО=ВС·sin60° = 6√3 · √3 ÷2 = 9
Мы определили длины половин диагоналей ромба.
Тогда площадь ромба АВСD равна
3√3 × 9 × 2 = 54√3 =