Обозначим буквами вершины треугольника АВС (начиная с нижней левой вершины), а точку пересечения прямой (показан голубым цветом) со стороной АС за К.
Объяснение:
Сначала мы должны опустить высоту ВН в треугольнике АВС, которая также является высотами треугольников АВК и ВКС.
1) Высота в равнобедренном треугольнике является медианой и биссектрисой
следовательно ->
-> АН=НС=(21+11)÷2=16
2) Рассмотрим треугольник ВНК:
НК=НС-КС=16-11=5
По т. Пифагора:
ВН^2=169-25
ВН=12
3)Можно рассмотреть любой из треугольников АВН и ВНС
По т. Пифагора:
х^2=144+256
х^2=400
х=20
ОТВЕТ: х=20
какое из следующих утверждений неверно?
а) Если высота треугольника делит сторону, к которой она проведена ,на равные отрезки ,то этот треугольник-равнобедренный. ВЕРНО
б) Если медиана и биссектриса,проведенные из одной вершины,не совпадают,то этот треугольник не является равнобедренным. НЕВЕРНО
Медиана и биссектриса, проведенные к боковой стороне равнобедренного треугольника, не совпадают. Совпадают только проведенные к основанию.
в) Если треугольник равносторонний ,то длина любой его высоты равна длине любой его биссектрисы. ВЕРНО
г) Если два угла треугольника равны ,то биссектриса третьего угла делит противолежащую сторону треугольника на равные отрезки. ВЕРНО
ответ : неверное утверждение б)