Пусть AD и BE пересекаются в точке K В треугольнике ABD BE - и биссектриса и высота, то есть это равнобедренный треугольник, AB = BD, и BE - так же и медиана, то есть AK = KD; Пусть теперь точка F лежит на продолжении BA за точку A, так что CF II AD. Так как BD - медиана, то в треугольнике FBC AD - средняя линия, а CA - медиана треугольника FBC; само собой, BE так же медиана этого равнобедренного треугольника FBC (если её продолжить за точку E до пересечения с FC в точке G), то есть точка Е делит AC, как это обычно и бывает с медианами: AE/EC = 1/2; Более того, BE/EG = 2/1, то есть BE/BG = 2/3; а BK/KG = 1/1; то есть BK/BG = 1/2; отсюда BK/BE = 3/4; и KE/BE = 1/4; Таким образом, AK = KD = 48; KE = 24; BK = 72; AB = √(48^2 + 72^2) = 24√13; BC = 2*AB = 48√13; AE = √(48^2 + 24^2) = 24√5; AC = 3*AE = 72√5;
Пусть ∠NKL = ∠MKP = φ - π/2 = α; неизвестная площадь NKM = s; a - s = KL*KN*sin(α)/2; b - s = KM*KP*sin(α)/2; если это перемножить, то (a - s)*(b - s) = KL*KN*KM*KP*(sin(α))^2/4 = a*b*(sin(α))^2; (a - s)*(b - s) = a*b*(sin(α))^2; осталось решить квадратное уравнение s^2 - (a + b)*s + a*b*(cos(α))^2 = 0; s = (a + b)/2 +- √((a + b)^2 - a*b*(cos(α))^2); s = (a + b)/2 +- √(a^2 + b^2)/2 + a*b*(sin(α))^2); Осталось понять, какой оставить знак. s = (a + b)/2 - √(a^2 + b^2)/2 + a*b*(cos(φ))^2);
я нашел частный случай, очень легкий, и по нему можно понять, что остается именно "минус". Пусть α = π/6; и сам треугольник KLM имеет угол L = π/6; оба треугольника получаются одинаковые, и их пересечение имеет площадь a/2, то есть s = (a + b)/4
х -высота цилиндра
у - радиус основания
2ух=10 ⇒х²=25/у²
πу²=5 ⇒у²=5/π, решаем систему
х²=5π ⇒х=√5π