S = 10,08 ед.изм2
или
S = 10 8/100 ед.изм2 (десять целых восемь сотых единиц измерения в квадрате)
Объяснение:
1). Данную трапецию разделим на 3 сегмента:
1 Прямоугольник и 2 боковых треугольника.
2). Найдем площади данных фигур: (в клетках)
а). Sпр = 6 * 7 = 42 кл2.
б). Sтр1 = 5 * 6 / 2 = 15 кл2.
в). Sтр2 = 2 * 6 / 2 = 6 кл2.
Сумма данных сегментов будет являться площадью трапеции (в клетках):
г). Sтр = 42 + 15 + 6 = 63 кл2.
Единицы измерения не указаны, возможно см2, но продолжим так, зная размер клетки, получим площадь в ед.изм.:
S = 0,4 * 0,4 * 63 = 0,16 * 63 = 10,08 ед.изм2.
или
S = 4/10 * 4/10 * 63 = (4 * 4)/(10 * 10) * 63 = 16/100 * 63 = (16 * 63)/(100 * 1) = 1008/100 = 10 8/100 ед.изм2 (десять целых восемь сотых единиц измерения в квадрате)
В параллелограмме меньшая диагональ лежит напротив меньшего угла. В параллелограмме пара острых и пара тупых углов. ∠60° острый, значит d лежит напротив него.
Площадь боковой поверхности: Sб=P·h=2(a+b)·h, где h - высота параллелепипеда.
h=Sб/(2(a+b))=286/(2(3+8))=13 см.
По теореме косинусов d²=a²+b²-2ab·cos60=3²+8²-2·3·8/2=49,
d=7 см.
Диагональное сечение прямого параллелепипеда - это прямоугольник, образованный диагоналями основания и боковыми рёбрами.
Площадь диагонального сечения:
Sд=d·h=7·13=91 см² - это ответ.