Строго говоря, теорема Птолемея дает необходимое и достаточное условие того, что около четырехугольника можно описать окружность. Но если честно, я ни разу не встречал задачу, в которой пришлось бы использовать достаточность. То есть всегда бывает дано, что четырехугольник вписан в окружность, и отсюда делается соответствующий вывод. Предлагаю в таком виде теорему и формулировать.
Теорема Птолемея. Если четырехугольник ABCD вписан в окружность, то произведение диагоналей равно сумме произведений противоположных сторон
AC·BD=AB·CD+AD·BC.
Меня всегда удивлял тот факт, что в этой теореме приходится перемножать противоположные стороны. Как-то далеко друг от друга они расположены. Вот если бы соседние перемножались, то никакого предубеждения у меня не возникало бы. Это и дало толчок к моему доказательству.
Найдем площадь ABCD двумя
Во-первых, эта площадь равна половине произведения диагоналей на синус угла между ними - эта формула, как мне кажется, школьникам должна быть известна.
Доказывается она либо разбиением четырехугольника диагоналями на 4 треугольника, либо более красиво - рассматривая его как половину (по площади) параллелограмма, чьи стороны параллельны диагоналям четырехугольника и проходят через его вершины,
Если обозначить угол между диагоналями буквой Ф, то
S=(1/2)AC·BD·sin Ф
Угол Ф - это угол между хордами AC и BD, а он, как известно из школьной программы, равен полусумме дуг AB и CD, высекаемых этими хордами. Через вписанные углы он выражается в виде суммы углов BCA и CBD. Запомним это.
Во-вторых, более или менее естественно попробовать сосчитать площадь ABCD как сумму площадей двух треугольников, скажем ABC и ADC, но в этом случае мы будем получать произведения соседних сторон, а не противоположных. Выйдем из положения не совсем обычным Отрежем от четырехугольника треугольник ABC (останется нетронутым треугольник ADC) , перевернем ABC другой стороной и "приклеим" на старое место. Если Вы не любите "играть в бирюльки" и хотите "математическое рассуждение", то вот оно. Рассмотрите диаметр окружности, перпендикулярный AC, и рассмотрите точку B', симметричную точке B относительно этого диаметра. Конечно, она снова лежит на окружности, при этом AB=CB'; BC=B'A. Иными словами, мы получили четырехугольник AB'CD, площадь которого равна площади старого, с теми же сторонами, но теперь те стороны, которые были противоположными, стали соседними. Разобьем четырехугольник AB'CD на два треугольника так, чтобы их сторонами были бывшие противоположные. Тогда
(углы DAC и DBC опираются на одну дугу и поэтому равны, углы CAB' и BCA опираются на равные хорды B'C и AB и поэтому равны).
Сравнив две полученные формулы для площади ABCD, получаем искомую формулу.
Пример на использование теоремы Птолемея.
Четырехугольник ABCD вписан в окружность, AB=1, AC=2, AD=6/5, ∠ADC=90°. Найти BD.
Решение. ∠ADC=90°⇒∠ABC=90°, то есть ABCD разбит диагональю AC на два прямоугольных треугольника. С теоремы Пифагора находим неизвестные катеты этих треугольников: BC=√3; CD=8/5. По теореме Птолемея BD·AC=AB·CD+BC·AD; 2BD=8/5+6√3/5; BD=(4+3√3)/5
Заканчивая сей опус, хочу извиниться за то, что не сейчас сделать чертеж - очень много дел запланировано на этот вечер. Если кто-нибудь сделает мне его - отдам все заработанные на этой задаче .)))
Задача 1
Решение(согласно моему рисунку)
1) Проведем высоту ВН.
2) Рассмотрим четырехугольник АВНД
Он будет параллелограммом, т.к. АВ || СД (как основания), а АД || ВН (т.к. высоты к одной стороне)
Тогда, т.к. АВНД - параллелограмм, АВ=ДН=6 см., АД=ВН (по св-ву параллелограмма)
3) Рассмотрим прямоугольный треугольника ВНС
НС=10 - 6=4 см.
Угол С=60° (по условию)
Тогда угол НВС=90° - 60°=30°.
В прямоугольном треугольнике против угла в 30° лежит катет, равный половине гипотенузы. Гипотенуза ВС=8 см. (это и будет большая боковая сторона)
ВС²=ВН² + НС² (теорема Пифагора)
ВН²=64 - 16
ВН²=48
ВН=4√3
4) ВН=АД=4√3, тогда АД=4√3 (это и будет меньшая боковая сторона)
ответ: АД=4√3 см., ВС=8 см.