Два кола мають зовнішній дотик. Відстань між їх центрами 60 см. Знайдіть радіус більшого з кіл, якщо один з ни відноситься до іншого як 2 : 3. У відвовідь запишіть От
1.Найдите координаты центра (2;-3;0) и радиус сферы R=5, 2.Напишите уравнение сферы радиуса R = 7 с центром в точке A(2; 0; -1). 3.Лежит ли точка А(-2; 1; 4) на сфере, заданной уравнением (x+2)2+(y-1)2+(z-3)2=1. , значит точка А(-2; 1; 4) Лежит на сфере, заданной уравнением (x+2)2+(y-1)2+(z-3)2=1. 4.Если точки А и В принадлежат сфере, то любая точка отрезка АВ не может принадлежать этой сфере, АВ - это хорда, и только две точки - А и В - принадлежат этой сфере 5.В этом задании "Могут ли все вершины прямоугольного треугольника с катетами 4 см и 2 см лежать на сфере радиуса см?" не указан радиус сферы. Однако, если все вершины прямоугольного треугольника с катетами 4 см и 2 см и гипотенузой √(16+4)=√20 лежат на сфере, то 2R≥√20, т е R≥√20 /2. Если радиус будет известен на вопрос ответишь сам 6.Формула площади круга: 7. - уравнение окружности координаты центра (3;0;0) и радиус окружности R=3
Рассмотрим ∆АВD.
P – середина АВ по условию;
Т – середина АD по условию;
Следовательно РТ – средняя линия ∆ABD. Средняя линия треугольника вдвое меньше стороны треугольника, которой она параллельна.
PT//BD так как средняя линия параллельна одной из сторон треугольника.
Тогда РТ=0,5*BD=0,5*8=4 см
Рассмотрим ∆BCD.
Q – середина СВ по условию;
R – середина CD по условию;
Следовательно QR – средняя линия ∆BCD. Средняя линия равна половине стороны, которой она параллельна.
QR//BD так как средняя линия параллельна одной из сторон треугольника.
Тогда QR=0,5*BD=0,5*8=4 см.
PT//BD и QR//BD => РТ//QR.
РТ=4 см; QR=4 см => РТ=QR.
Тогда получим что, две противоположные стороны четырехугольника PQRT параллельны и равны, следовательно четырехугольник PQRT – параллелограмм.
Рассмотрим ∆PBQ u ∆ABC.
Угол АВС – общий;
Так как точка Р – середина АВ, то РВ равна половине АВ
Следовательно РВ/АВ=1/2;
Так как точка Q – середина СВ, то QB равно половине СВ
Тогда QB/CB=1/2;
Исходя из найденного, ∆PBQ~∆ABC по двум пропорциональным сторонам и углу между ними, а коэффициент подобия треугольников 1/2.
Следовательно PQ/AC=1/2;
2/AC=1/2;
AC=2*2
AC=4 см.
ответ: Параллелограмм; РТ=4 см; АС=4 см.