В пирамиде из задачи 1 (В правильной треугольной пирамиде боковые ребра наклонены к основанию под углом 60,длина бокового ребра 8 см.) найти расстояние между рёбрами,лежащими на скрещивающихся прямых.
Периметр= 264. Т.к треугольник равносторонний, то все стороны равны. А так как периметр-это сумма всех сторон, то чтобы найти одну из равных сторон, нужно разделить периметр на 3. Получаем: 264:3=88 см(каждая сторона) Теперь, чтобы найти площадь, нужно найти высоту. Это биссектриса, медиана и высота любой из вершины данного треугольника. Если вы учитесь в 9 классе, то это решается только так. Так как она делит сторону, к которой приведена, пополам, то получаем треугольник, со сторонами- х,88,44. По теореме Пифагора: Х^2+44^2=88^ Х=44√3 Площадь равна 88*44√3=3872√3. Но если ты учишься в 6-8, то ничем не могу Но ответ этот.
Из правильного треугольника АВС: из теоремы Пифагора: высота ВК равна 3 корня из 2. Угол ОАК - это угол между плоскостью АОС и основанием. Поскольку угол ОАК = 30 градусов, то катет ОК равен гипотенузы ОА как катет, который лежит против угла 30 градусов. ОК = ОА/2. Пускай ОК = х, тогда ОА = 2х. Из прямоугольного треугольника ОАК: за теоремой Пифагора: OA^2 = OK^2 + AK^2, 4x^2 = 9 - x^2, 3x^2 = 9, x^2 = 3, x = корень из 3. OK = корень из 3. Объем призмы равен площади основания умножить на высоту: S = So*H = S(ABC)*OK = BK*AC/2*OK = 9 корней из 6.
Т.к треугольник равносторонний, то все стороны равны. А так как периметр-это сумма всех сторон, то чтобы найти одну из равных сторон, нужно разделить периметр на 3. Получаем:
264:3=88 см(каждая сторона)
Теперь, чтобы найти площадь, нужно найти высоту. Это биссектриса, медиана и высота любой из вершины данного треугольника. Если вы учитесь в 9 классе, то это решается только так.
Так как она делит сторону, к которой приведена, пополам, то получаем треугольник, со сторонами- х,88,44. По теореме Пифагора:
Х^2+44^2=88^
Х=44√3
Площадь равна
88*44√3=3872√3.
Но если ты учишься в 6-8, то ничем не могу Но ответ этот.