Так как боковые ребра пирамиды равны, ее высота проецируется в центр окружности, описанной около основания. Докажем это: Пусть МО - высота пирамиды. МА = МВ = МС по условию, МО - общий катет для треугольников МОА, МОВ и МОС, тогда эти треугольники равны по гипотенузе и катету, значит и ОА = ОВ = ОС. Т.е. О - центр описанной окружности.
Площадь основания по формуле Герона: р = (39 + 17 + 28)/2 = 84/2 = 42 см S = √(p(p - AB)(p - BC)(p - AC)) = √(42 · 3 · 2 · 25 · 14) = = √(6 · 7 · 3 · 2 · 25 · 2 · 7) = 6 · 7 · 5 = 210 см²
Радиус окружности, описанной около произвольного треугольника: R = AB·BC·AC / (4·S) = 39 · 17 · 28 / (4 · 210) = 22,1 см ОА = R = 22,1 см Из прямоугольного треугольника МОА по теореме Пифагора: МО = √(МА² - ОА²) = √(22,9² - 22,1²) = √((22,9 - 22,1)(22,9 + 22,1)) = = √(0,8 · 45) = √36 = 6 см V = 1/3 ·S · MO = 1/3 · 210 · 6 = 420 см³
Дана правильная четырехугольная пирамида SАВСД, длина бокового ребра которой равна L = 3 см, а стороны основания a = 2√3 см.
Проведём осевое сечение через 2 боковых ребра.
В сечении равнобедренный треугольник АSС с боковыми сторонами L = 3 см и основанием - диагональ квадрата основания d = a√2 = (2√3)*√3 = 2√6 см.
Высота Н пирамиды равна:
Н = √(L² - (d/2)²) = √(9 - 6) = √3 см.
Перпендикуляр из центра основания пирамиды на боковое ребро (пусть это ОК) - это высота треугольника ОSС, она равна (√3*√6)/3 = √2 см.
Искомый угол лежит в перпендикулярном сечении к боковому ребру.
В сечении - треугольник ВКД.
Апофема А = √(3² - (2√3/2)²) = √(9 - 6) = √3 см.
КД - высота, она равна 2S/L = (2*((1/2)*2√3*√6))/3 = 2√2 см.
То есть она как гипотенуза треугольника ОКД в 2 раза больше катета ОК, а угол КДО равен 30 градусов.
Отсюда искомый угол ВКД равен 2*60 = 120 градусов.