См. рисунок в приложении Пусть ребро АА₁ образует со сторонами основания АВ и AD угол в 60°. Соединяем точку А₁ с точкой D. В треугольнике АА₁D AA₁=2 м AD=1 м ∠A₁AD=60° По теореме косинусов A₁D²=AA₁²+AD²-2·AA·₁AD·cos60°=4+1-2·2·1(1/2)=3 A₁D=√3 м Треугольник A₁AD- прямоугольный по теореме обратной теореме Пифагора: АА₁²=AD²+A₁D² 2²=1+( √3 )² A₁D⊥AD В основании квадрат, стороны квадрата взаимно перпендикулярны АС⊥AD Отсюда AD⊥ плоскости A₁CD ВС || AD BC ⊥ плоскости A₁CD
ВС⊥A₁C
A₁C перпендикулярна двум пересекающимся прямым ВС и СD плоскости АВСD По признаку перпендикулярности прямой и плоскости А₁С перпендикуляр к плоскости АВСD A₁C - высота призмы A₁C=Н Из прямоугольного треугольника A₁DC: А₁С²=А₁D²-DC²=(√3)²-1=3-1=2 A₁C=Н=√2 м
∠А (∠ВАК) = 96°
∠К (∠АКМ) = 73°
∠М (∠ВМК) = 84°
∠В (∠АВМ) = 107°
Объяснение:
Сума протилежних кутів вписаного у коло чотирикутника дорівнює 180 градусам (властивість).
∠ВМК+∠ВАК = 180°
∠ВАК = 180° - ∠ВМК = 180° - 84° = 96°
∠АВК та ∠АМК - вписані кути. Вони спираються на дугу АК.
Вписані кути, що спираються на одну дугу, рівні. ⇒
∠АМК = ∠АВК= 42°
Так як сума кутів трикутника дорівнює 180°, то з ΔАМК знаходимо кут ∠АКМ:
∠КАМ+∠АМК+∠АКМ = 180°
∠АКМ = 180°- ∠КАМ-∠АМК= 180°-65°-42°= 73°
Так як Сума протилежних кутів вписаного у коло чотирикутника дорівнює 180 градусам, маємо:
∠АВМ + ∠АКМ = 180°
∠АВМ = 180° - ∠АКМ = 180°- 73° = 107°