Дано:
АВСД — параллелограмм,
АВ = 2 * ВС,
периметр АВСД равен 54 сантиметра.
Найти длины сторон параллелограмма АВСД: АВ, СД, ВС, АД — ?
Рассмотрим параллелограмм АВСД. У него противолежащие стороны равны между собой, тогда ВС = АД , АВ = СД.
Пусть длина стороны ВС равна х сантиметров, тогда длина стороны АВ = 2 * х сантиметров. Нам известно, что периметр АВСД равен 54 сантиметров. Составляем уравнение:
Р авсд = АВ + СД + ВС + АД;
54 = 2 * х + 2 * х + х + х;
х * (2 + 2 + 1 + 1) = 54;
6 * х = 54;
х = 54 : 6;
х = 9 сантиметров — длины сторон ВС и АД;
9 * 2 = 18 сантиметров — длины сторон АВ и СД.
ответ: 9 сантиметров; 9 сантиметров; 18 сантиметров; 18 сантиметров.
Объяснение:
1) Экскурс в теорию: угол между плоскостями (ВАС) и (САН)- двугранный угол (НАСВ) измеряется градусной мерой линейного угла L HCB , образованного лучами СВ и СН , имеющими начало на ребре (АС) и перепендикулярными к нему,
т.е. L HCB = 60⁰. (см. рис.).
2) Углом между прямой и плоскостью наз-ся угол между этой прямой и её проекцией на данную плоскость, тогда углом между катетом ВС и плоскостью (САН) является L L HCB = 60⁰ .
3) Угол между гипотенузой АВ найдём, рассмотрев ΔАВН - прям.:
sin L BAH = BH/AB = 0,5√3a/(a√2) =√6/4,
таким образом L BAH = arcsin √6/4.
ОТвет: 60⁰; arcsin √6/4.
УДАЧИ
Координаты вектора а -12; и -7, а координаты вектора в -6 и 6.
Скалярное произведение векторов -12*(-6)+(-7)*6=6*(12-7)=30