ответ: 34 см
Объяснение:
1. Расстояния от концов диаметра до касательной -- это перпендикуляры к касательной из этих концов.
AB = 15 см, CD = 19 см
2. O - центр окружности, E - точка касания. Проведём OE. По свойству касательной к окружности OE ⊥ AD
3. Так как OE ⊥ AD, AB ⊥ AD, CD ⊥ AD, то AB ║ CD ║ OE
4. AB║CD ⇒ ABCD - трапеция
5. BO = OC, AB║CD║OE ⇒ AE = ED (теорема Фалеса)
6. Из пункта 5 следует, что OE - средняя линия трапеции ABCD.
OE = (AB + CD)/2 = (15+19)/2 = 34/2 = 17 см
7. OE - радиус. Тогда диаметр BC = 2OE = 2*17 = 34 см
если разрезать данный треугольник пополам - по высоте, то получатся два прямоугольных треугольника, в которых
a=катет1= высота =6
b=катет2= половина основания =(х+6)/2
c=гипотенуза =боковая сторона = х
по теореме Пифагора
c^2 = a^2 +b^2
x^2 = 6^2 +((х+6)/2)^2
x^2 = 36 +(х+6)^2/4 - домножим обе части на 4
4x^2 = 144 +(х+6)^2
4x^2 = 144 +х^2+24x+36
4x^2 -х^2-24x-180=0
3x^2 -24x-180=0 - делим на 3
x^2 -8x-60=0
квадратное уравнение
D= 304
x1=4-2√19 < 0 - по смыслу не подходит
x2=4+2√19 - боковая сторона
6+x2 =6+4+2√19=10+2√19 или 2(5+√19) - основание