Пусть x(км/ч) - средняя скорость второго гонщика; y(км/ч) - средняя скорость первого гонщика; Тогда скорость удаления равна (y-x) км/ч; Так как первый гонщик в первый раз обогнал второго на круг через 12 минут, то получаем уравнение: 4/(у−x)=12/60, y−x=20; у=20+х; Так как всего каждый из гонщиков проехал 50*4= 200 км и на финиш первый пришел раньше второго на 30 минут, то получаем второе уравнение: 200/х−200/y=30/60; 400/х=1 + 400/у; 400/х=(400+у)/у; х=400у/(400+у); с учетом того, что y = 20+ x, получаем: х=400(20+х)/(420+х); х^2+420х=400х+8000; х^2+20х-8000=0; решая, находим х=80; ответ: 80 км/ч
Ну хорошо вот вам строгое доказательство.Проведем к концам отрезка величиной r,два радиуса r,то треугольник с вершиной в центре окружности равносторонний,и угол при вершине 60 градусов. Проведем радиусы ко всем концам 5 последовательным отрезков равных по величине самому радиусу(как и было сказано в условии) ,то есть последняя вершина будет 6-ой. Тогда yгол A1OA6=60*5=300. Таким образом до полного круга не хватает еще 360-300=60.Значит угол A6OA1=60,тк треугольник A6OA1 равнобедренный Тк боковые стороны равны как радиусы,то равны и углы при основе . И они равны:( 180-60)/2=60. То есть треугольник A6OA1 тоже равносторонний как и все остальные,а значит A6A1=r. А значит Тк при известном положении точки A6 существует только 1 точка A7 лежащая правее A6 ,что угол A6OA7 равен 60,то отсюда очевидно что A1=A7