Точка, назовём её С(х;у;z) равноудалена от точек А(1,2,3) и В(-3,3,2).
Это означает, что расстояние АС равно расстоянию ВС.
Точка С принадлежит оси ОХ, значит её координаты равны (х;0;0)
Расстояние между точками можно определить по формуле:
sqr((x2-x1)^2+(y2-y1)^2+(z1-z2)^2), значит
sqr((х-1)^2+(0-2)^2+(0-3)^2)=sqr((x+3)^2+(0-3)^2+(0-2)^2)
(x-1)^2+4+9=(x+3)^2+9+4
(x-1)^2=(x+3)^2
x^2-2x+1=x^2+6x+9
-8x=8
x=-1
Итак, искомая точка, равноудалённая от А и В имеет координаты
С(-1;0;0)
Два угла треугольника равны 40° и 52°. Найдите тупой угол, который образуют высоты треугольника, выходящие из вершин этих углов.
- - -
Дано :ΔАВС.
∠А = 40°.
∠В = 52°.
ВН₁ и АН₂ - высоты.
Точка О - ортоцентр (точка пересечения высот).
Найти :∠АОВ = ? (или ∠Н₁ОН₂, не важно, так как они равны как вертикальные).
Решение :Немного о расположении ортоцентра О :
Для начала найдём ∠С.
По теореме о сумме углов треугольника -
∠А + ∠В + ∠С = 180°
∠С = 180° - ∠А - ∠В
∠С = 180° - 40° - 52°
∠С = 88°.
Так как все углы ΔАВС - острые, то ортоцентр О лежит внутри ΔАВС.
- - -
Рассмотрим ΔСВН₁ - прямоугольный (так как ∠ВН₁С = 90° по определению высоты треугольника).
Сумма острых углов прямоугольного треугольника равна 90°.Тогда -
∠Н₁СВ + ∠Н₁ВС = 90°
∠Н₁ВС = 90° - ∠Н₁СВ
∠Н₁ВС = 90° - ∠Н₁СВ
∠Н₁ВС = 90° - 88°
∠Н₁ВС = 2°.
Теперь рассмотрим ΔОВН₂ - прямоугольный (так как ∠ОН₂В = 90°).
По выше сказанному -
∠ВОН₂ + ∠ОВН₂ = 90°
∠ВОН₂ = 90° - ∠ОВН₂
∠ВОН₂ = 90° - 2°
∠ВОН₂ = 88°.
- - -
∠ВОН₂ и ∠АОВ - смежные.
Сумма смежных углов равна 180°.Следовательно -
∠ВОН₂ + ∠АОВ = 180°
∠АОВ = 180° - ∠ВОН₂
∠АОВ = 180° - 88°
∠АОВ = 92°.
ответ :92°.