Допустим у нас есть два равных треугольника АВС и А1В1С1, АМ и А1М1 - их соответственные медианы, проведенные к сторонам ВС и В1С1 соответственно тогда ВМ = МС, В1М1 = М1С1 (АМ и А1М1 - медианы), а раз ВС = В1С1, то все педидущие четыре отрезка равны: ВМ = МС = В1М1 = М1С1 далее уголВ = углуВ1(соответствующие углы равных треугольников) АВ = А1В1 (соответствующие стороны равных треугольников)
на основании выше изложенного делаем вывод, что тр.АВМ = тр.А1В1М1(по двум сторонам и углу между ними) а уже на основании равенства треугольников АВМ и А1В1М1 делаем вывод о равенстве наших медиан АМ и А1М1, что и требовалось доказать
Пусть углы при осн.равны-х ,тогда тупой угол равен 4х ,медиана в равноб.треуг так же явл высотой и биссектрисой ,получается ,что треуг (который получается при делении большего высотой ,т.есть любой из них, они оба равны ) прямоуг. высота перпен.осн. значит один из углов равен 90град. следовательно на остальные 2 так же приходится 90 град .значит х+2х =90 ,тогда х=30 гдад. теперь по свойству .катеп (т.есть (медиана =а) лежащий против угла в 30 град равен половине гипотинузы (боковой стороны треуг ) значит боковая сторона=2а
не пон никак Непон 6 7 8 9 0 6 5 4 4 6 8 8 9 9.9