Хорда параллельна одному их диаметров. Второй диаметр проходит через середину хорды и центр окружности, являющийся серединой диаметра.
Это означает, что у двух диаметров есть одна общая точка-центр окружности. Аксиома гласит, что через данную точку плоскости (центр окружности в нашем случае) можно провести перпендикуляр к данной прямой только один. Вывод: Существует только ещё 1 диаметр перпендикулярный первому диаметру.
Другая аксиома гласит: "Два перпендикуляра к одной и той же прямой параллельны между собой. "У нас параллельны хорда и один из диаметров, то они и является теми двумя перпендикулярами к одной и той же прямой (проходящей через второй диаметр). И хорда, и первый диаметр являются перпендикулярами ко второму диаметру. Что и следовало доказать.
Биссектриса угла при вершине равнобедренного треугольника будет и медианой и высотой... обозначим ее длину (а) получившийся при этом прямоугольный треугольник получится равнобедренным... катеты у него равны: биссектриса = (а) и половина основания тоже (а) в этом прямоугольном равнобедренном треугольнике гипотенуза = 3 найдем катеты... 2a^2 = 9 ---> a^2 = 4.5 высота, опущенная на боковую сторону, будет в свою очередь и медианой... и опять из нового прямоугольного треугольника по т.Пифагора: x^2 + (1.5)^2 = 4.5 x^2 = 4.5 - 1.5*1.5 = 1.5*(3 - 1.5) = 1.5*1.5 x = 1.5
Хорда параллельна одному их диаметров. Второй диаметр проходит через середину хорды и центр окружности, являющийся серединой диаметра.
Это означает, что у двух диаметров есть одна общая точка-центр окружности. Аксиома гласит, что через данную точку плоскости (центр окружности в нашем случае) можно провести перпендикуляр к данной прямой только один. Вывод: Существует только ещё 1 диаметр перпендикулярный первому диаметру.
Другая аксиома гласит: "Два перпендикуляра к одной и той же прямой параллельны между собой. "У нас параллельны хорда и один из диаметров, то они и является теми двумя перпендикулярами к одной и той же прямой (проходящей через второй диаметр). И хорда, и первый диаметр являются перпендикулярами ко второму диаметру. Что и следовало доказать.