М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
zachar3
zachar3
04.03.2022 10:37 •  Геометрия

Площа осьового перерізу конуса 0,6 см квадратних висота конуса 1,2 см .знайти площу повної поверхні конуса.

👇
Ответ:
максик1234431
максик1234431
04.03.2022

Осевое сечение конуса равнобедренный треугольник, высота которого является высотой конуса (1,2 см), а основание - диаметр конуса (2R). Площадь треугольника равна половине произведения основания на высоту, следовательно, 0,6=1/2 · 2R · 1,2, откуда R=0,5см. Образующую (l) находим по Т.Пифагора, как гипотенузу: корень квадратный из суммы квадратов высоты и радиуса 0,25+1,44=1,69, извлекаем корень, получаем l=1,3см. Площадь полной поверхности состоит из суммы площадей основания и боковой поверхности.

Sосн.=Pi·R², Sосн.=0,25·Pi см²

Sбок.=  Pi·R·l,  Sбок.=  Pi·0,5·1,3= 0,65·Pi  см²

Sп.п.= 0,25·Pi +  0,65·Pi=0,9·Pi  см²

4,4(4 оценок)
Открыть все ответы
Ответ:
Кириджа114
Кириджа114
04.03.2022

Катеты данного прямоугольного треугольника равны 2√10 см и 6√10 см.

Объяснение:

Рисунок прилагается.

Дано: ABC прямоугольный треугольник, ∠ С = 90°, CH- высота, AH = 2 см - проекция катета AC на гипотенузу, BH = 18 см - проекция катета BC на гипотенузу.

Найти катеты AC и BC.

Обозначим для удобства катеты AC = a, BC = b, проекции катетов AH = a₁, BH = b₁, высоту CH = h.

Высота в прямоугольном треугольнике, опущенная на гипотенузу, равна среднему пропорциональному проекций катетов на гипотенузу.

h² = a₁*b₁ = 2 * 18 = 36;   h = 6

⇒ Высота треугольника, опущенная на гипотенузу CH = h = 6 см.

Из прямоугольного ΔACH по теореме Пифагора:

a² = h² + a₁² = 6²  + 2² = 36 + 4 = 40;   a = √40 = 2√10

Катет AC = 2√10 см/

Из прямоугольного ΔBCH по теореме Пифагора:

b² = h² + b₁² = 6²  + 18² = 36 + 324 = 360;   b = √360 = 6√10

Катет BC = 6√10 см.

Катеты данного прямоугольного треугольника равны 2√10 см и 6√10 см.


Проекція катетів прямокутного трикутника 2 і 18 см. Знайти катети​
4,8(54 оценок)
Ответ:

1.Пусть одна сторона равна х, тогда другая 6х. У параллелограмма противолежащие стороны равны. Сумма сторон равна 84. Тогда составим уравнение

х+х+6х+6х=84

14х=84

х=84:14

х=6

Тогда 6х=6×6=36

Проверка: 6+6+36+36=84

ответ: 6; 6; 36; 36


2.В прямоугольнике противоположные стороны равны. Значит ВС=АD=18см

BD и АС являются диагоналями прямоугольника ABCD.

Диагонали в прямоугольнике равны, т.е BD=АС=22см

О-точка пересечения диагоналей, которая делит их пополам. Значит ОD=ОА=ОВ=ОС=1/2 BD=11см

Рboc=ОB+ОC+ВC

Рboc=11+11+18=40см

3.диагонали ромба являются биссектрисами его углов (то есть делят их пополам);


сумма соседних углов ромба равна 180°;


противоположные углы ромба равны



4.Диагональ АС делит параллелограмм на 2 подобных треугольника. Углы NAB=PCD, угол ABN=CDP и следовательно углы BNA= СPD, отсюда следует что прямоугольники ABN и CDP также подобны. Следовательно прямые BN и PD равны между собой. Что и требовалось доказать


5.Примем коэффициент отношения AF:FD=a. Тогда AF=a, FD=5a. Их сумма 6а=18 см, ⇒ а=18:6=3 см. Отрезок АF=3 см,  отрезок FD=5•3=15 см АВСD - параллелограмм. ВС║AD, CF – секущая. ∠ВСF=∠СFD как накрестлежащие. Но ∠FCD=∠BCF (СF – биссектриса) ⇒ ∠CFD=∠FCD . Углы при основании FC треугольника FDC равны, следовательно, он равнобедренный и CD=FD=15 см ( свойство). Запомним: Биссектриса угла параллелограмма отсекает от него равнобедренный треугольник.   Противоположные стороны параллелограмма равны, ⇒ АВ=CD=15 см. Периметр =сумма всех сторон АВСD. Р=2•(18+15)=66 см

4,6(11 оценок)
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ