а) 332,8 см².
б) 24+4√2 дм; 40 дм².
Объяснение:
а) ABCD - трапеция. СЕ - высота. В ΔCED ∠D=60*, ∠CED=90*, ∠ECD=30*.
MN=16 см - средняя линия. Высота СЕ делит ее на отрезка MK=10 см и KN=6 см (16-10=6 см).
KN является средней линией треугольника CED и равна половине основания ЕВ. Следовательно ED=2KN=2*6=12 см.
Найдем высоту СЕ=h= 12/tg30* = 12 / 0.577 =20.8 см.
S=h*MN=20,8*16=332,8 см ² .
***
б) ABCD - трапеция. ∠С=135*. СЕ - высота делит угол С на 2 угла 135*=90*+45*. Следовательно Δ CDE - равнобедренный СЕ=ED=12-8=4 дм.
Найдем СD=√CE²+DE² =√4²+4²= 4√2 дм.
Периметр Р=АВ+ВС+CD+AD=4+8+4√2+12= 24+4√2 дм.
Площадь равна S= h(a+b)/2=4(12+8)/2=40 дм ².
Нет, не может, поясним, почему.
Пусть расстояние от а до А равно АТ, а от В до а равно ВК, где точки Т и К - соответственно точки пересечения перпендикуляров АТ и ВК с прямой а, пусть АВ пересекается с а в точке О, тогда гипотенузы АО и ВО в прямоугольных треугольниках АТО и ВКО должны быть больше соответственно катетов АТ и ВК, т.е. АВ=АО+ВО должна быть больше, чем АТ+ВК=6+4=10, а не равно 8 см.