Пусть ad = a1d1 — равные биссектрисы, ∠a = ∠a1, ac = a1c1 — равные стороны. в δаdс = δa1d1c1: ∠dac = ∠d1a1c1 (т.к. ∠dac половина угла ∠bac ∠dac = ∠bac : 2 = ∠b1a1c1 : 2 = ∠d1a1c1). ad = a1d1, ас = а1с1. (по условию: ad = a1d1 — равные биссектрисы, aс = a1c1 — равные прилежащие стороны). таким образом, δadc = δа1d1c1 по 1-му признаку равенства треугольников, откуда ∠с = ∠с1 как лежащие против равных сторон в равных треугольниках) в δabcи δа1в1с1: ас = а1с1, ∠а = ∠а1 (по условию) ∠с = ∠с1. таким образом, δabc = δа1в1с1 по 1-му признаку равенства треугольников, что и требовалось доказать.
Окружности будут равные, т.к. их диаметры равны, как отрезки параллельных прямых, заключенные между параллельными основаниями трапеции)) центры окружностей расположены на биссектрисах соотв углов: CO1, DO1, CO2, DO2 CO1 _|_ DO1 как биссектрисы углов, сумма которых = 180 градусов))) аналогично CO2 _|_ DO2 CO2DO1 --прямоугольник, диагонали прямоугольника равны: CD=O1O2 радиус окружностей можно найти из прямоугольного треугольника, построив еще одну высоту трапеции))) отрезки касательных к окружности, проведенных из одной точки, равны)))