АС = 8см.
Объяснение:
Угол СВК - внешний угол треугольника АВС при вершине В.
BD - биссектриса этого угла.
Проведем СР параллельно биссектрисе BD.
Тогда ∠РСВ = ∠СВD как внутренние накрест лежащие при параллельных BD и PC и секущей ВС.
∠СРВ = ∠КBD как углы соответственные при параллельных BD и PC и секущей РВ. =>
∠СРВ = ∠РСВ. Значит треугольник РМВ равнобедренный и
РВ = ВС = 6см.
В треугольнике АВD РС - средняя линия, так как СР||BD,
а точка Р - середина стороны АВ (АР=РВ =6см).
Следовательно, АС = СD = 8 см.
1) АВ=(5;-3;-4)
АС=(-1;3;-1)
МN=2*(5;-3;-4)-3*(-1;3;-1)
MN=(10;-6;-8)-(-3;9;-3)
MN=(13;-3;-5)