М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
mog69
mog69
08.04.2023 18:51 •  Геометрия

Решите уравнения 4x^4-5x^2+1=0
X^2-5x-6/X-6
Решение

👇
Открыть все ответы
Ответ:
Ухв
Ухв
08.04.2023

Отрезки, для длин которых выполняется пропорция

Подобные треугольники в евклидовой геометрии — треугольники, углы у которых соответственно равны, а стороны одного треугольника пропорциональны сходственным сторонам другого треугольника.

Сходственные (или соответственные) стороны подобных треугольников — стороны, лежащие напротив равных углов

Средняя линия фигур в планиметрии — отрезок, соединяющий середины двух сторон этой фигуры. Понятие употребляется для следующих фигур: треугольник, четырёхугольник, трапеция.

треугольники в евклидовой геометрии — треугольники, углы у которых соответственно равны, а стороны соответственно пропорциональны. Являются подобными фигурами. В данной статье рассматриваются свойства подобных треугольников в евклидовой геометрии. Некоторые утверждения являются неверными для неевклидовых геометрий.

MicroExcel.ru

MicroExcel.ru Математика Геометрия

МатематикаГеометрия

Свойства высоты прямоугольного треугольника

11.07.202052995

В данной публикации мы рассмотрим основные свойства высоты в прямоугольном треугольнике, а также разберем примеры решения задач по этой теме.

Примечание: треугольник называется прямоугольным, если один из его углов является прямым (равняется 90°), а два остальных – острые (<90°).

Содержание скрыть

Свойства высоты в прямоугольном треугольнике

Свойство 1

Свойство 2

Свойство 3

Свойство 4

Пример задачи

Свойства высоты в прямоугольном треугольнике

Свойство 1

В прямоугольном треугольнике две высоты (h1 и h2) совпадают с его катетами.

Три высоты в прямоугольном треугольнике

Третья высота (h3) опускается на гипотенузу из прямого угла.

Свойство 2

Ортоцентр (точка пересечения высот) прямоугольного треугольника находится в вершине прямого угла.

Свойство 3

Высота в прямоугольном треугольнике, проведенная к гипотенузе, делит его на два подобных прямоугольных треугольника, которые также подобны исходному.

Деление прямоугольного треугольника высотой из вершины прямого угла на подобные треугольники

1. △ABD ∼ △ABC по двум равным углам: ∠ADB = ∠BAC (прямые), ∠ABD = ∠ABC.

2. △ADC ∼ △ABC по двум равным углам: ∠ADC = ∠BAC (прямые), ∠ACD = ∠ACB.

3. △ABD ∼ △ADC по двум равным углам: ∠ABD = ∠DAC, ∠BAD = ∠ACD.

Доказательство: ∠BAD = 90° – ∠ABD (ABC). В то же время ∠ACD (ACB) = 90° – ∠ABC. Следовательно, ∠BAD = ∠ACD.

Аналогичным образом доказывается, что ∠ABD = ∠DAC.

Свойство 4

В прямоугольном треугольнике высота, проведенная к гипотенузе, вычисляется следующим образом:

1. Через отрезки на гипотенузе, образованные в результате ее деления основанием высоты:

Формула для нахождения высоты к гипотенузе в прямоугольном треугольнике

Высота к гипотенузе в прямоугольном треугольнике

2. Через длины сторон треугольника:

Формула для нахождения высоты к гипотенузе в прямоугольном треугольнике через его стороны

Высота к гипотенузе в прямоугольном треугольнике

Данная формула получена из Свойства синуса острого угла в прямоугольном треугольнике (синус угла равен отношению противолежащего катета к гипотенузе) :

Синус острого угла в прямоугольном треугольнике (формула)

Синус острого угла в прямоугольном треугольнике (формула)

Формула для нахождения высоты к гипотенузе в прямоугольном треугольнике через его стороны

Биссектрисой треугольника называется отрезок биссектрисы угла треугольника, соединяющий вершину с точкой, находящейся на противолежащей стороне

4,5(98 оценок)
Ответ:
Stall124
Stall124
08.04.2023
Расстояние от точки до плоскости – длина перпендикуляра, опущенного из точки на эту плоскость.
1) Обозначим расстояние от В до плоскости - ВС,
от М до плоскости - МН.  
АС= проекция АВ на плоскость, ⇒ А, Н и С лежат на одной прямой. 
Отрезки, перпендикулярные  плоскости , параллельны.
Угол М=углу В как углы при пересечении параллельных МН и ВС секущей АВ, углы Н и С прямые, 
угол А общий для  ∆ АМН и ∆ АВС ⇒ они подобны.
Из подобия следует АВ:АМ=ВС:МН=(2+3):2⇒
ВС:МН=5:2
МН=2•(12,5:5)=5 м 
    Если АВ - перпендикуляр к плоскости, то расстояние от нее до В=12,5, а до М равно 2/5 от АВ и равно 5 м. 
––––––––––––––––––––––––––––––––––––––
2)Пусть наклонные будут:
 ВС=а,  ВА=а+6
ВН- расстояние от общего конца В до плоскости. 
Т.к. это расстояние общее, ВН⊥ плоскости, то 
из прямоугольного ∆ АВН
ВН²=АВ²-АН²
из прямоугольного ∆ ВСН
ВН²=ВС²-НС²⇒
АВ²-АН²=ВС²-НС²
(а+6)²-17²=а²-7²
⇒ решив уравнение, получим
12а=204
а=17 см
ВС=17 см
АВ=17+6=23 см
–––––––––––––––––––––
3) Пусть эти опоры КМ=4 м, ТЕ=8 м, МЕ=3 м. 
Т.к. обе вертикальные, то они параллельны. 
Т - выше К на 4м,  расстояние между К и точкой Р на ТЕ=3м,
 ∆ КТР  с отношением катетов 3:4 - египетский ⇒ гипотенуза КТ=5 м ( проверка по т.Пифагора даст тот же результат). 
ответ - 5 м. 
4,7(62 оценок)
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ