Треугольники АМВ и CMD подобны по первому признаку подобия: два угла одного треугольника соответственно равны двум углам другого треугольника. В нашем случае: <ABD=<BDC как накрест лежащие углы при пересечении двух параллельных прямых АВ и DC секущей BD <BAC=<ACD как накрест лежащие углы при пересечении двух параллельных прямых АВ и DC секущей АС Для подобных треугольников можно записать: DC:AB=MC:MA Пусть МС будет х, тогда МА будет 25-х. Запишем отношение сторон в виде: 24:16=x:(25-x) 24(25-x)=16x 600-24x=16x 40x=600 x=15 МС=15 см
Вообщем. Из всех данных рассмотрим треугольник CDB. Он прямоугольный, его сторона DB=AD, так как CD делит AB пополам, от сюда следует, что DB равно 6 см. Теперь найдём гипотенузу этого треугольника. Угол DCB равен 30 градусам, так написано в дано. Вспоминаем волшебную теоремку, что катет лежащий на против угла в 30 градусов равен половине гипотенузы. У нас катет на против этого угла равен 6 см, значит гипотенуза равна 12 см, а от сюда мы можем посчитать периметр, так, как противолежащие стороны параллелограмма равны, получается 12+12+12+12=48. ответ: Р=48 см.
<ABD=<BDC как накрест лежащие углы при пересечении двух параллельных прямых АВ и DC секущей BD
<BAC=<ACD как накрест лежащие углы при пересечении двух параллельных прямых АВ и DC секущей АС
Для подобных треугольников можно записать:
DC:AB=MC:MA
Пусть МС будет х, тогда МА будет 25-х. Запишем отношение сторон в виде:
24:16=x:(25-x)
24(25-x)=16x
600-24x=16x
40x=600
x=15
МС=15 см