1. Многоку́тник (багатоку́тник, поліго́н) — геометрична фігура, замкнена ламана (сама, або разом із точками, що лежать усередині).
2.
Сума довжин всіх сторін многокутника називається його периметром.
3.Діагоналями многокутника називаються відрізки, що з'єднують дві вершини многокутника, які не належать одній його стороні.
4.Многокутник називається опуклим , якщо він лежить в одній півплощині відносно будь-якої прямої, що містить його сторону
5.многокутник буде опуклим, якщо відносно будь-якої прямої, що проходить через сторону многокутника, многокутник повністю буде розташований в півплощині утвореній цією прямою (тобто по один бік від прямої).
6.Сума зовнішніх кутів опуклого n-кутника, взятих по одному при кожній вершині, дорівнює 360
7.
8.Центром є точка (прийнято позначати O) перетину серединних перпендикулярів до сторін многокутника. Центр описаного кола опуклого n-кутника лежить на точці перетину серединних перпендикулярів його сторін.
9.Це коло називається описаним навколо многокутника
10.Центр кола, вписаного в многокутник, є точкою перетину його бісектрис.
Суміжні та вертикальні кути, їх властивості
Суміжними називаються два кути, одна сторона яких спільна, а дві інші утворюють пряму, тобто є доповняльними променями.
Сума суміжних кутів дорівнює 180 градусам.
Два суміжних кути утворюють розгорнутий кут.
Якщо два кути рівні, то суміжні з ними кути теж рівні.
Кут, суміжний із прямим кутом, є прямим.
Кут, суміжний з гострим кутом, є тупим.
Кут, суміжний з тупим кутом, є гострим.
Будь-який промінь, що виходить із вершини розгорнутого кута і проходить між його сторонами, поділяє його на два суміжні кути.
Якщо два кути рівні, то суміжні з ними кути також рівні.
Два кути, суміжні з одним і тим же кутом, рівні.
Якщо два суміжні кути рівні, то вони прямі.
Вертикальними називаються два кути, сторони одного з яких є додатковими променями до сторін другого кута.
Вертикальні кути рівні.
При перетині двох прямих утворюються дві пари вертикальних кутів і чотири пари суміжних кутів.
Якщо відомий один із кутів, що утворились при перетині двох прямих, то знайти інші кути можна таким чином: знайти кут, суміжний з даним, враховуючи, що їх сума 180 градусів, після чого знайти кути, вертикальні з відомими, враховуючи, що вертикальні кути рівні.
Запам’ятайте поняття про теорему, аксіому та доведення.
Доведення — міркування про правильність твердження про властивість тієї або іншої геометричної фігури.
Теорема — твердження, яке треба довести.
Аксіома — твердження, що не потребують доведення, і які містяться у формулюваннях основних властивостей найпростіших фігур.