Это задачка на теорему Менелая. Если прямая пересекает AC в точке K, то BN*CK*AM/(NC*KA*MB) = 1; Если обозначить KC = p*AC; AM = q*BA; то 2*p*q/((1-p)*(1+q)) = 1; (1) Треугольник CNK по условию имеет площадь 1/5 от площади ABC; (я считаю, что площадь BNKA в 4 раза БОЛЬШЕ площади CNK. Если наоборот, то положение точки K не может соответствовать условию - она будет вне треугольника.) По условию NC = BC/3; поэтому расстояние от N до AC составляет 1/3 расстояния от B до AC. Отсюда (площадь CNK) = p*(1/3)*(площадь ABC); или p/3 = 1/5; p = 3/5; p/(1 - p) = 3/2; если подставить это в (1) q/(1 + q) = 1/3; q = 1/2; То есть AM = BA/2;
Доказательство теоремы Менелая необыкновенно простое. Если провести какую-то прямую вне треугольника, так, чтобы она пересекалась с прямой NM в точке D где-то вне треугольника, потом провести через три вершины прямые параллельно NM, которые пересекут эту прямую в точках A2; B2; C2; (ну, в смысле AA2 II BB2 II CC2 II MN, и напомню, точка К - тоже на MN) то
это всё доказательство. С учетом "знака", то есть "направления" отрезка, пишут обычно -1; тут при составлении равенств важно не запутаться в отрезках :)))
Если из точки вне окружности к ней проведены касательная и секущая, то квадрат отрезка касательной от этой точки до точки касания равен произведению длин отрезков секущей от этой точки до точек ее пересечения с окружностью. чертеж: нарийсуй окружность, потом, например, слева от окр. точку a, от нее касательную (точку пересеч обозначь b), и из точки a секущую (точки пересечения с окр. обозначь (слева направо) c и d). подпиши над ab: 10-(x+4); над ac: x; cd: x+4; ad: 2x+4. решение: составим уравнение: (10-(x+4))^2=x*(2x+4) (6-x)^2=2x^2+4x; 36-12x+x^2-2x^2-4x=0; x^2+16x-36=0; d=256-4*(-36)=400; корень из d = 20; x = (-16+20)/2=2; 10-(x+4)=6-x=4. ответ: длина касательной 4 см.
56 см²
Объяснение:
S=7×8=56см² площа прямокутника