1.Пусть MN - средняя линяя, M лежит на АB, N - на CD. Ясно, что точка О лежит на MN, так как она равноудалена от AD и BC;
2.Пусть ОК перпендикулярно АВ. Ясно, что ОК = 2*20,25/5 = 8,1;
3.Пусть ОР перпендикулярно CD. Ясно, что ОР = r = d/2 = 1,5 (радиус окружности);
4.Пусть СН - высота трапеции ABCD к AD. Ясно, что СН = d = 3;
Вот, теперь можно приступить к решению :)
Треугольник CHD - прямоугольный с катетом CH = 3 и гипотенузой CD = 5, то есть это "египетский" треугольник, что очень упрощает расчеты. Ясно, что HD = 4; (в решении это не пригодится).
В прямоугольном треугольнике PON угол PON равен углу HCD, поскольку ON перпендикулярно CH и OP перпендикулярно CD, поэтому треугольник PON подобен CHD, то есть это тоже "египетский" треугольник, и ON/PO = CD/CH = 5/3; ясно, что ON = 5*1,5/3 = 2,5;
В прямоугольном треугольнике KOM угол KOM равен углу PON,просто потому, что трапеция ABCD равнобедренная и углы при основаниях у неё равны (можно так же провести высоту из В на AD и увидеть равенство угла KOM и угла между высотой и AB, а этот угол очевидно равен углу CHD - это тупой угол при малом основании МИНУС 90 градусов, и угол CHD - тоже). Поэтому треугольник KOM тоже подобен CHD, то есть это тоже "египетский" треугольник, и MO/OK = CD/CH = 5/3; ясно, что ON = 5*8,1/3 = 13,5;
Средняя линяя MN = MO + ON = 13,5 + 2,5 = 16.
Не могут, докажем это.
Допустим, что они пересекаются в точке О.
Через точки К, О, Р можно по аксиоме провести плоскость и притом только одну. Пусть это плоскость alpha.
По аксиоме: если две точки прямой лежат в плоскости, то и вся прямая лежит в этой плоскости.
Для прямой КМ: K принадлежит alpha, O принадлежит alpha и в то же время принадлежит прямой KM, значит две точки прямой КМ принадлежат плоскости alpha, значит и вся прямая принадлежит плоскости alpha, значит любая точка прямой KM, в частности, точка M принадлежит alpha.
Для прямой PT: P принадлежит alpha, O принадлежит alpha и в то же время принадлежит прямой PT, значит две точки прямой PT принадлежат плоскости alpha, значит и вся прямая принадлежит плоскости alpha, значит любая точка прямой PT, в частности, точка T принадлежит alpha.
В итоге получили, что точки K,M,P,T принадлежат плоскости alpha, получаем противоречие с условием.
Значит прямые KM и PT не пересекаются.