Вообще при параллельных прямых и секущей образуется 8 углов, в значений всего 2, т.к. они там все попарно равны, на рисунке равны 1 и 3 как вертикальные, 1 и 5 как соответственные, 5 и 7 как вертикальные
/1=/3=/5=/7
И соответственно также: /2=/4=/6=/8
Это верно для обоих случаев в этой задаче
Теперь к решению:
1.
Предположим, что угол 2 равен 35 градусов
Тогда угол 1, как смежный с ним, равен 180-35=145 градусов, остальное доказывается так же, как я расписал выше, все углы будут либо 35, либо 135 градусов, это основные свойства.
2.
Предположим, что угол 2 это х градусов, тогда угол 1 это 4х градусов, составляем уравнение:
х+4х=180
5х=180
х=36
Тогда угол 2 равен 36 градусов
А угол 1 равен 144 градуса
И остальные тоже соответственно равны им по свойствам углов
Треугольник равнобедренный. Боковая сторона равна 10, основание равно 12. Высоту найдем из прямоугольного треугольника, где гипотенуза - боковая сторона, а один из катетов - половина основания треугольника. Тогда по Пифагору: h=√(10²-6²)=8см. Площадь треугольника равна S=(1/2)a*h, где а - сторона треугольника, а h - высота, проведенная к этой стороне. S=(1/2)12*8=48см². Можно решить по теореме Герона: S=√p(p-a)(p-b)(p-c), где р - полупериметр, а,b и c - стороны. Тогда S=√16*6*6*4=48см² ответ: площадь треугольника равна 48см²
Объяснение:
Вообще при параллельных прямых и секущей образуется 8 углов, в значений всего 2, т.к. они там все попарно равны, на рисунке равны 1 и 3 как вертикальные, 1 и 5 как соответственные, 5 и 7 как вертикальные
/1=/3=/5=/7
И соответственно также: /2=/4=/6=/8
Это верно для обоих случаев в этой задаче
Теперь к решению:
1.
Предположим, что угол 2 равен 35 градусов
Тогда угол 1, как смежный с ним, равен 180-35=145 градусов, остальное доказывается так же, как я расписал выше, все углы будут либо 35, либо 135 градусов, это основные свойства.
2.
Предположим, что угол 2 это х градусов, тогда угол 1 это 4х градусов, составляем уравнение:
х+4х=180
5х=180
х=36
Тогда угол 2 равен 36 градусов
А угол 1 равен 144 градуса
И остальные тоже соответственно равны им по свойствам углов