обозначим проекции точек а; в; с; d и точки о - точки пересечения диагоналей :
a_(1); b_(1); c_(1); d_(1); o_(1)
рассмотрим прямоугольные трапеции aa_(1)d_(1)d и вв_(1)с_(1)с
пересекаются по прямой оо_(1)
оо_(1)- средняя линия трапеции aa_(1)d_(1)d
оо_(1)- средняя линия трапеции вв_(1)с_(1)с
так как средняя линия трапеции равна полусумме оснований, то
из трапеции aa_(1)d_(1)d:
оо_(1)=(аа_(1)+dd_(1))/2
из трапеции вв_(1)с_(1)с :
оо_(1)=(bb_(1)+cc_(1))/2
приравниваем правые части:
(аа_(1)+dd_(1))/2=(bb_(1)+cc_(1))/2 ⇒ [b]аа_(1)+dd_(1)=bb_(1)+cc_(1)[/b]
2. 160 (вписанный угол; чтобы найти дугу, на которую опирается, нужно умножить угол на два)
3. 30 (углы опирающиеся на одну дугу равны)
4. 150 (центральный угол в два раза больше вписанного)
5. Угол опирающийся на диаметр равен 90
6. Угол В вписанный => делим дугу на два = 65; угол В и угол А равны (равнобедренный треугольник) => угол А = 65
7. Треугольник АОВ равнобедренный (ОВ=ОА как радиусы) => угол В=угол А => угол АОВ= 180-35-35=110; угол ВОС смежный => 180-110=70 => дуга равна центральному углу =>
ответ 70