Находим векторы АВ и АС.
АВ = (-6; 0; -9), модуль равен √117 ≈ 10,81665383.
АС = (3; -4; -2), модуль равен √29 ≈ 5,385164807.
Площадь треугольника равна половине модуля векторного произведения векторов АВ и АС.
i j k| i j
-6 0 -9| -6 0
3 -4 -2| 3 -4 = 0i - 27j + 24k - 12j - 36i - 0k =
= -36i - 39j + 24k.
Модуль равен √((-36)² + (-39)² + 24²) = √3393 ≈ 58,24946352.
Площадь равна: S = (1/2)√3393 ≈ 29,12473176
.
Объяснение:
Эту задачу мы решим с теоремы Пифагора, она звучит так:
сумма квадратов длин катетов равна квадрату длины гипотенузы. (a^2 + b^2 = c^2.)
Дано: длинна 1 дома 24м
длинна 2 дома 16м
Найти: расстояние между крышами домов.
(так как конструкция данной задачи напоминает треугольник, то мы будем эту задачу решать по прямоугольнуму треугольнику.)
1)24-16=8м (2 катет треугольника.)
1 катет треугольника равет 6м
если теорема пифагора звучит так:
сумма квадратов длин катетов равна квадрату длины гипотенузы.
то нам надо:
2) (6*6) + (8*8) = 36 + 64 = 100м. (это 10^2.)
ответ: 10м.
Надеюсь
(◠‿◕)