2. Площадь параллелограмма S = a*h, где a - основание, а h - высота. Поскольку дана большая высота, то основанием является меньшая сторона (поскольку шлощадь неизменна, то для большей стороны высота будет меньшей).
S = 12*7 = 84 см²
3. Площадь равнобедренного треугольника S = (1/2)*b*h, где b - основание, а h - высота. Известна боковая сторона - а и высота h. Боковая сторона, высота и половина основания образуют прямоугольный треугольник. Применяем теорему Пифагора:
Периметры - это сумма сторон. AB+BC+AC=AВ+ВD+AD или ВС+АC=ВD+АD или 4+АО+7=10+ОD+AD. АО=ОD+AD-1. (1) AC+CD+AD=BC+CD+BD или AC+AD=BC+BD или AО+7+AD=4+10+ОD. АО=ОD-AD+7.(2) Приравняем (1) и (2): ОD+AD-1=ОD-AD+7. Отсюда 2AD=8 и AD=4.Тогда OD=АО-3. По теореме косинусов в треугольнике ВОС: Cosα = (b²+c²-a²)/2bc. (α - между b и c) или Cosα = (100+49-16)/140 =133/140=0,95. В треугольнике АОD угол <АОD=<BOC, как вертикальные Тогда по теореме косинусов в треугольнике AOD: 0,95 = (АО²+(АО-3)²-16)/(2*АО(АО-3)). Или 2АО²-6АО-7=1,9АО²-5,7АО или 0,1АО²-0,3АО-7=0 или АО²-3АО-70=0. Отсюда АО1=(3+17)/2=10, АО2=-7 - не удовлетворяет условию. ответ: АО=10.
1. в) 1440°
2. а) 84 см²
3. г) 108 см²
Объяснение:
1. Суммы углов выпуклого n-угольника = 180°(n-2)
Для n = 10, Сумма углов = 180°*8 = 1440°
2. Площадь параллелограмма S = a*h, где a - основание, а h - высота. Поскольку дана большая высота, то основанием является меньшая сторона (поскольку шлощадь неизменна, то для большей стороны высота будет меньшей).
S = 12*7 = 84 см²
3. Площадь равнобедренного треугольника S = (1/2)*b*h, где b - основание, а h - высота. Известна боковая сторона - а и высота h. Боковая сторона, высота и половина основания образуют прямоугольный треугольник. Применяем теорему Пифагора:
a² = (b/2)² + h² => b = 2*√(a² - h²) = 2*√15² - 9² = 2*12 = 24
S = (1/2)*24*h = 108 см²