AC:16=7:3––АС=16•7:3=28 см
Объяснение:
Примем коэффициент отношения отрезков на АВ равным а,Так как AM : MB = 3:4, то АВ=АМ+ВМ=7а ⇒ AM:AB = 3:7.
CN:CB = 3:7- дано.
а) Точки М и N лежат в плоскости ∆ АВС и в плоскости α. ⇒MN - линия пересечения этих плоскостей.
МN и АС высекают на прямых АВ и ВС пропорциональные отрезки.
Из обобщённой теоремы Фалеса: если отрезки, высекаемые прямыми на одной прямой, пропорциональны отрезкам, высекаемым теми же прямыми на другой прямой, то эти прямые параллельны.⇒ АС║MN.
Если прямая (АС), не лежащая в плоскости α, параллельна некоторой прямой (MN), которая лежит в плоскости α, то прямая параллельна плоскости . ⇒АС || α
б) Т.к. MN║AC, углы при их пересечении секущими АВ с одной стороны и ВС с другой равны как соответственные. Отсюда следует подобие треугольников MBN и ABC с коэффициентом подобия k=BC:NC=7:3 ⇒ AC:MN=7:3
AC:16=7:3––АС=16•7:3=28 см
Объяснение:
№1 ∠CBA=60°, (тк сумма углов в прямоугольном Δ 90, и 90-30=60)
∠СВЕ 60:2=30°(ВЕ-биссектрисса)
СЕ=1/2 *6=3(тк по теореме против угла в 30° лежит половина гипотенузы)
ВС=√6²-√3²=√36-√9=√27 (по теореме пифагора)
ВА=2*√27=2√27(тк против угла 30° лежит половина гипотенузы)
АС=√(2√27)²-√(√27)²=√4*27-√27=√108-√27=√81=9(по теореме пифагора)
∠ВАС=30°
№2
ΔАВС-равнобедренный(тк ∠САВ=∠СВА=45° (тк по теореме в прямоугольнов Δ сумма острых углов =90°, а 90-45=45))
СД-высота , биссектриса и медиана, тк в равнобедренном Δ высота=медиана=биссектриса⇒по правилу медианы СД=ДА=4см
АВ=2*АД (тк СД как медиана делит АВ на 2 равные части) АВ=8см
D¹=9+12+9=30cm
D²=12cm
R¹=30:2=15cm
R²=12:2=6cm