1.Треугольник ABD = 1. Угол ВАD = CAD
2. BDA=CDA
треугольнику ADC
3.AD - общая сторона.
Второй признак равенства
треугольников
2.
Углы 1 и 2 вертикальные, значит они
равны, следовательно треугольники, по двум углам и стороне, равны. Исходя из этого, СD делиться попалам в точки О
3.
<АСО=<1 как вертикальные углы.
<BDO=<2 как вертикальные углы. Но
<1=<2, значит
<ACO=<BDO.
<AOC=<BOD как вертикальные углы.
Значит, треугольники АСО и BDO
равны по второму признаку: сторона и два прилежащих к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней
углам другого треугольника: - ОС=ОD по условию;
- <ACO=<BDO как доказано выше;
.<AOC=<BOD как доказано выше. У равных треугольников АСО и BDO равны соответственные углы А и В.
4.
1)
поскольку a||b, то <1=<2
102:2=51°
остальные углы которые вертикальные с углами 1 и 2, также равны 51°
другие 4 угла которые смежные с ними равны 180-51=129°
2)
поскольку <1=<2, можно сделать вывод что m||n
поскольку m||n, то СВ такая же секущая как и АС, значит <3+<4=180
<4=180-120=60°
3)
(на 2 фото рисунок)
поскольку АD биссектриса, то угол DAF=72:2=36°
поскольку АВ||DF, то AD можно считать секущей
углы DAB и АDF внутренне разносторонние, то есть равны
DAB=АDF=36°
F=180-36-36=108°
4)
(на фото рисунок)
для того чтобы параллельные были прямыми, внутренне односторонние углы должны давать в сумме 180°
180-65=115°
угол КЕD=115°