Раз периметр ромба равен 16 см, то каждая его сторона равна 16:4=4 см. Точкой пересечения диагоналей получаем прямоугольный треугольник, в котором гипотенузой является сторона ромба, равная 4 см, а также катет, равный половине данной длины нашей диагонали, т.е. один из катетов равен 3√4:2=6:2=3. По теореме Пифагора находим второй катет: 4^2-3^2=7. Второй катет равен √7. Тут по таблице Брадиса я только примерно могу назвать градусную меру углов. Возьмём синус угла, напротив которого лежит половина нашей диагонали. Он будет равен 3:4=0,75. Градусная мера угла(примерно!) равна 49 градусов. Тогда градусная мера другого угла примерно будет равна 180-90-49=41 градус. Т.к. проведённые диагонали ромба являются и биссектрисами его углов, то градусная мера двух углов будет равна 98-ми градусам(лежащим напротив друг друга), а градусная мера других двух углов будет равна 82 градусам. Чтобы удостовериться, что данные расчёты в теории правильны, сложим эти углы(должно получиться 360 градусов)=82^2+98^2=360. ответ:Градусная мера острых углов ромба равна 82-ум градусам, а тупых 98-ми.
1 стор.-х 2 стор- 5х периметр (х+5х)*2=180 6х*2=180 6х=180:2 6х=90 х=90:6 х=15 см это 1 сторона 15*5=75 см это 2 сторона
раз разность двух сторон равна 15 см,значит 1 сторона на 15 см больше,чем 2 сторона 2 стор.-х 1 стор.-х+15 периметр ( х+х+15)*2=150 2х+15=150:2 2х+15=75 2х=75-15 2х=60 х=60:2 х=30 см это 2 сторона 30+15=45 см это 1 сторона
1.=(-2,5)
2.=9
Объяснение: