Подобные треугольники - треугольники, углы которых соответственно равны, а стороны одного пропорциональны сходственным сторонам другого треугольника. То есть и площади также должны быть пропорциональны.
Посчитаем площадь одного треугольника: 2+5+6=13 см. Разделим площадь большого треугольника (26 см) на площадь маленького (13 см), получится 2. Это означает, что стороны большого треугольника в 2 раза больше сторон маленького. Рассчитаем стороны большого треугольника: 2*2=4 см, 5*2=10 см, 6*2=12 см. Проверим правильно ли мы посчитали стороны: 4+10+12=26 см - периметр. Верно.
ответ: большая сторона подобного треугольника - 12 см.
А) для этого достаточно доказать, что МА не пересекает ВС и ей не параллельна.Если бы пересекала, то тогда ДВЕ точки прямой МА принадлежали бы плоскости квадрата. А если две точки прямой принадлежэат плоскости то и вся прямая её принадлежит, что противоречит условию. Если бы была параллельна, то: через две параллельные прямые всенда можно провести плоскость, а две прямые, параллельные третьей, параллельны и друг другу. И что получается: АD || BC (это противоположные стороны квадрата) и МА || ВС, по предположению. Значит, МА || AD, и они проходят через одну и ту же точку А. А это возможно только если прямые совпадают. Что тоже противоречит условию.б) Поскольку АD || BC, то угол между МА и AD= углу между МА и ВС. Так что 45 градусов.
Подобные треугольники - треугольники, углы которых соответственно равны, а стороны одного пропорциональны сходственным сторонам другого треугольника. То есть и площади также должны быть пропорциональны.
Посчитаем площадь одного треугольника: 2+5+6=13 см. Разделим площадь большого треугольника (26 см) на площадь маленького (13 см), получится 2. Это означает, что стороны большого треугольника в 2 раза больше сторон маленького. Рассчитаем стороны большого треугольника: 2*2=4 см, 5*2=10 см, 6*2=12 см. Проверим правильно ли мы посчитали стороны: 4+10+12=26 см - периметр. Верно.
ответ: большая сторона подобного треугольника - 12 см.