У рівнобедреному трикутнику ABC (AB=BC) точка L дотику вписаного кола ділить бічну сторону на відрізки, що відносяться 2:4. Основа ∆ ABC дорівнює 32 см. Знайдіть периметр трикутника. Будь ласка до ть!!
Пирамида называется правильной, если основанием её является правильный многоугольник, а вершина проецируется в центр основания, то есть боковые грани пирамиды равны и наклонены относительно основания под одним углом. Сечение amb, площадь которого надо найти - равнобедренный треугольник с основанием ab и боковыми сторонами am и bm. Основание нам дано - это сторона основания пирамиды, равная 8. Боковые грани - равные равнобедренные треугольники. Значит углы при вершинах граней равны 36°, равны и все углы при основании граней (180°-36°):2 = 72°. В треугольнике asm <asm=36°(дано), <sam=36°(как половина угла sac=72°) и <amb=(180°-72°)=108°. Углы ams и amc смежные. Тогда <amc=180°-108°=72° и значит треугольник amc равнобедренный и am=ac=8. Но am=bm, а ac=ab. Значит сечение - правильный треугольник и его площадь равна: Sabm = (√3/4)*a², где а - сторона треугольника. Итак, Sabm = (√3/4)*64 = 16√3.
1. Рассмотрим 3-ки NPM и RPQ:
<MNP = <PQR (по усл.)
NP = PQ (по усл.)
<NPM = <RPQ (вертикальные)
След-но,
тр. NPM = тр. RPQ (по стороне и двум прилежащим к ней углам)
21. Тр. CDE — равнобедренный (CD = DE)
значит,
<FCD = <HED
2. Рассмотрим 3-ки CFD и EHD:
CD = ED (по усл.)
<CDF = <EDH (по усл.)
<FCD = <HED (по доказанному)
След-но,
тр. CFD = тр EHD (по стороне и двум прилежащим углам)
31. Рассмотрим 3-ки QOR и POR:
RO — общая
<QOR = <POR (по усл.)
QO = PO(по усл.)
След-но,
тр QOR = тр POR (по двум сторонам и углу между ними)
41. <ВАС = <ВСА (по усл.), значит:
тр. АВС — равнобедренный (АВ = ВС)
2. <КАВ = 180 - <ВАС (смежные)
<NCB = 180 - <BCA (смежные)
т.к. <ВСА = <ВАС, то:
<КАВ = <NCB
3. Рассмотрим 3-ки КАВ и NCB:
KA=CN (по усл)
AB = BC (по доказанному)
<КАВ = <NCB(по доказанному)
След-но, тр. КАВ = тр NCB (по двум сторонам и углу между ними)
51. <А = <D (накрест лежащие при прямых АС и ЕD и секущей АD)
значит,
АС || ED
2. Т. к. АС || ED, то:
<С = <Е
3. <АВС = <DBE (вертикальные)
4. Рассмотрим 3-ки АВС и DBE:
Против равных углов лежат равные стороны, значит:
AB = BD
CB = BE
ED = AC
След-но,
тр АВС = тр DBE (по трем сторонам)
61. Рассмотрим 3-ки ADB и ВСD:
BD — общая
<АDB = <CBD (по усл)
<ABD = <BDC (по усл)
След-но,
тр ABD = тр BCD (по стороне и прилежащим к ней углам)