М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
MDL123
MDL123
02.08.2021 10:36 •  Геометрия

2Равнобедренный треугольник ABC вписан в окружность. Основание треугольника AC равно
радиусу окружности. Найдите величины дут AC, AB и BC.​

👇
Открыть все ответы
Ответ:
вика36100
вика36100
02.08.2021

Ничего не понял но очень интересно

Объяснение:

Ничего не понял но очень интересноНичего не понял но очень интересноНичего не понял но очень интересноНичего не понял но очень интересноНичего не понял но очень интересноНичего не понял но очень интересноНичего не понял но очень интересноНичего не понял но очень интересноНичего не понял но очень интересноНичего не понял но очень интересноНичего не понял но очень интересноНичего не понял но очень интересноНичего не понял но очень интересноНичего не понял но очень интересноНичего не понял но очень интересноНичего не понял но очень интересноНичего не понял но очень интересноНичего не понял но очень интересноНичего не понял но очень интересно

4,5(6 оценок)
Ответ:
Gay1122
Gay1122
02.08.2021
Точка К, из которой будет виден отрезок МN под наибольшим углом, будет находиться на общей окружности с точками М и N. При этом OK для неё является касательной.
По свойству касательной и секущей ОК²=ОМ·ОN.
Пусть ОМ=х, тогда ОN=OM+MN=x+6,
4²=x(х+6),
х²+6х-4=0,
х1=-8, отрицательное значение не подходит,
х2=2.
ON=2+6=8 дм - это ответ.

Теперь докажем, что отрезок  MN виден из точки К под большим углом.
Пусть радиус окружности около тр-ка КMN равен r.
На стороне ОК в любом месте возьмём точку Р и опишем окружность около тр-ка РMN, радиусом R. ОР для неё является секущей, а для окружности, радиусом r - касательной, значит R>r.
Формула хорды: l=2R·sin(x/2), где х - градусная мера хорды.
∠MKN=α, ∠MPN=β.
Обратим внимание, что углы α и β - это половина градусной меры хорды.
MN=2R·sinβ ⇒ sinβ=MN/2R.
MN=2r·sinα ⇒ sinα=MN/2r.
Сравним синусы, предположив, что они равны.
MN/2R=MN/2r.
1/R=1/r, но R>r, значит 1/R<1/r, значит sinβ<sinα.
Так как градусная мера хорды не может быть больше 180°, значит в формуле хорды 0°<α<90°, 0°<β<90°.
В этом диапазоне синус угла тем больше, чем больше его градусная мера,
значит α>β.
Доказано.
Решить на одной из сторон острого угла с вершиной о отмечены точки м и n ( м лежит между о и n). на
Решить на одной из сторон острого угла с вершиной о отмечены точки м и n ( м лежит между о и n). на
4,4(27 оценок)
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ