Доказательство
1) Возьмем произвольную точку M на биссектрисе угла BAC, проведем перпендикуляр MK и ML к прямым AB и AC
Рассмотрим прямоугольные треугольники AMK и AML. Они равны по гипотенузе и острому углу. (AM - общая гипотенуза, ∠1∠2 по условию\). Следовательно, MKML
2) Пусть точка M лежит внутри угла BAC и равноудалена от его сторон AB и AC. Докажем, что луч AM - биссектриса угла BAC
Проведем перпендикуляры MK и ML к прямым AB и AC. Прямоугольные треугольники AMK и AML - равны по гипотенузе и катету (AM - общая гипотенуза, MKML по условию ). Следовательно, ∠1∠2. Но это и значит, что луч AM - биссектриса угла BAC. Теорема доказана
ответ: №42.5 sin∠А= 0,8572; cos∠А=0,5077; tg∠А=1,6643.
sin∠C=0,7960; cos∠С=0,6018; tg∠C=1,3270.
sin∠В=0,9272; cos∠В=0,3746; tg∠В=2,4750.
№42.6 выполнить аналогично №42.5
Объяснение: Пусть в Δ АВС АВ=13, ВС=14, АС=15.
Из теоремы косинусов:
cos∠А=(13²+15²-14²) : (2*13*15)=(169+225-196):390=0,5077 ⇒
⇒ ∠А≈59°; sin∠А= 0,8572; tg∠А=1,6643.
По теореме синусов АВ : sin∠C=ВC : sin∠А ⇒
⇒ sin∠C=АВ*sin∠А:ВС=13*0,8572:14=0,7960 ⇒
⇒ ∠С≈53°, cos∠С=0,6018; tg∠C=1,3270.
Из теоремы о сумме углов треугольника:
∠В= 180° - (∠А+∠С)=180° - (59°+53°)=180° - 112°= 68° ;
sin∠В=0,9272; cos∠В=0,3746; tg∠В=2,4750.