М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Lexakek111
Lexakek111
28.05.2023 11:19 •  Геометрия

решите задания с геометрии!

👇
Ответ:
Dayun3212
Dayun3212
28.05.2023

Задание номер 4:

<С = 180-30-30=120 (рівнобедренний)

<А=180-40-90=50 (прямокутний)

<А=<С=(180-120)/2=30

4,4(3 оценок)
Открыть все ответы
Ответ:
sahabg
sahabg
28.05.2023
В равнобедренном треугольнике высота делит основание пополам. Следовательно получаем прямоугольный треугольник, в котором нам известна гипотенуза 5 см (боковая сторона) и один из катетов 3 см(основание делим пополам).
По теореме Пифагора ("квадрат гипотенузы равен сумме квадратов катетов") определим значение второго катета. Обозначим катет за Х.
Х^2 + 3^2 = 5^2
x^2 + 9 = 25
x^2 =25-9
х^2 = 16
x=4
Высота к основанию равна 4 см.
Вычислим площадь треугольника: S=(a*h)/2, где а - основание треугольника, h - высота к основанию.
S=(6*4)/2=12
Зная площадь треугольника вычислим высоту к боковой стороне.
h1=(2*S)/b, где b - сторона равнобедренного треугольника, h1 - высота к боковой стороне
h1=(2*12)/5 = 4,8 см
Высоты к равным сторонам равны.
ответ: высота к основанию 4 см, высота к боковой стороне 4,8 см
4,5(72 оценок)
Ответ:
Zoomf
Zoomf
28.05.2023
Построим сечение пирамиды плоскостью ABK. K∈ грани PCD.
1) Отметим для определенности вершины основания пирамиды таким образом:
На заднем плане слева направо D и A, на переднем слева направо C и B
AB паралл CD. CD∈PCD. AB∉PCD.
Если прямая, не лежащая в данной плоскости, параллельна какой-нибудь прямой, лежащей в этой плоскости, то она параллельна данной плоскости. Значит, AB парал плоскости PCD. Или грань PCD парал AB.
Точка K∈PCD. В этом случае секущая плоскость будет пересекать эту грань по отрезку KL парал следу AB. L∈PD⇒ABKL - секущая плоскость. Это будет равнобедренная трапеция
KL - линия пересечения плоскостей ABK и PCD.
KL∉ABC - плоскости основания пирамиды
KL парал AB - по построению
AB∈ плоскости ABC⇒KL парал ABC по выше указанной теореме.
2) Нужно найти площадь ABKL. Отметим точки и соединим их:
E - середина KL; N - середина AB. EN - высота трапеции.
S=1/2(KL+AB)*EN
AB=12 - по условию
a) Для нахождения KL рассмотрим тр-ки PCD и PKL. Они подобны. Из подобия записываем пропорциональность сторон:
CD:KL=PC:PK
РК:КС=1:3⇒PC:CK=4:1⇒CD:KL=4:1⇒KL=1/4*CD=1/4*12=3
Итак, KL=3
б) Теперь займемся поиском EN.
Проведем апофемы PM и PN, где PM∈ грани PCD, PN∈ грани PAB
O - центр основания (точка пересечения диагоналей AC и BD)
Соединим точки M и N. O∈MN. MN=12
Так как каждое ребро равно 12, то боковые грани - равносторонние тр-ки
Апофемы - высоты равносторонних тр-ков. Если a - сторона правильного тр-ка, то a√3/2 - его высота. Значит, PM=PN=12*√3/2=6√3
Построим отдельно тр-ник MPN. Он  - равнобедренный
Соединяем точки E и N.
PO - его высота. MO=ON=6⇒по теореме Пифагора
PO^2=PM^2-MO^2=(6√3)^2-6^2=6^2(3-1)=36-2=72⇒PO=√72=√36*2=6√2
Проведем EF парал PO. Тогда EN можно найти из тр-ка EFN. Для этого нужно знать длины отрезков EF и FN.
Из подобия выше рассмотренных тр-ков PM:PE=4:1
Рассмотрим тр-ки OMP и FME. Они подобны⇒
MP:ME=PO:EF=MO:MF
MP:ME=4:3⇒EF=3/4*PO=3/4*6√2=9/2*√2; MF=3/4*MO=3/4*6=9/2
FN=FO+ON=OM-MF+ON=MN-MF=12-9/2=15/2
EN^2=EF^2+FN^2=(9/2*√2)^2+(15/2)^2=(3/2)^2*3^2*2+(3/2)^2*5^2=
=(3/2)^2*(18+25)=43*(3/2)^2⇒
EN=3/2*√43 - высота трапеции

S=1/2(KL+AB)*EN=1/2*(3+12)*3/2*√43=45√43/4
ответ: S=45√43/4
4,4(55 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ