Объяснение:
{ AM - MB = 7
{ MB = AM\2
=>
AM - (AM\2) = 7 > 2AM - AM = 14 >
AM = 7 и
MB = AM\2 = 7\2 = 3,5
11) AM =MB = AB > L A = L M = L B = 180\3 = 60 град.
AM = MB и MD _|_ AB > L AMD = L M\2 = 60\2 = 30 град. =>
DM = 2 * DE = 2 * 4 = 8
14) AKM = AEM, так как L MAK = L MAE и L AKM = L AEM =>
и L AMK = L AME => треугольники подобны по трем углам, а равны, так как гипотенуза АМ общая =>
KM = EM = 13
15) L CMB = 180 - (L C + L CBM) = 180 - (70 + 40) = 70 град.
L BMD = 180 - (L MBD + L MDB) = 180 - (40 + 90) = 50 град.
L AMD = 180 - (L CMB + L BMD) = 180 - (70 + 50) = 60 град. =>
MD = AM\2 = 14\2 = 7 Незнаю наверное правильно
(а + b) / 2 = 10
где a, b - верхнее и нижнее основания
откуда получаем:
a + b = 20
а = 20 - b
2. Находим площадь S₁ верхней части трапеции, которая по условию составляет 3 части
S₁ = (10+а)/2 * h
Находим площадь S₂ нижней части трапеции, которая по условию составляет 5 частей
S₂ = (10 + b) /2 h
h - высота каждой из вышеуказанных трапеций, которая равна половине высоты данной основной трапеции.
3. Получаем пропорцию
S₁ : S₂ = 3 : 5
Подставив вместо S₁ и S₂ их выражения, имеем
(10+а)/2 * h : (10 + b) /2 h = 3 : 5
Сократив, имеем
(10 + a) * 5 = (10 + b) *3
Подставляем вместо а выражение а = 20 - b
(10 + 20 - b) *5 = (10 + b) *3
(30 - b) * 5 = 30 + 3b
150 - 5b = 30 + 3b
5b + 3b = 150 - 30
8b = 120
b = 120 : 8
b = 15 - нижнее основание
а = 20 - b
а = 20 - 15 = 5
a = 5 - верхнее основание
ответ: а = 5; b = 20