Сторона правильного шестиугольника равна радиусу описанной окружности, т.е. а = R.
Т.к. проведя все радиусы в шестиугольнике, вписанном в окружность, мы разобьем его на 6 равносторонних треугольников (см. рис.), а площадь получившегося треугольника можно найти по формуле
1/2 · R · R · sin60° = 1/2 · R² · √3/2 = R²√3/4
(полный круг составляет 360°, тогда угол при вершине равностороннего треугольника будет равен 60°, а sin60° = √3/2), то площадь шестиугольника будет равна:
1)Окружность вписана в треугольник, если она касается всех его сторон. Расстояние от центра вписанной окружности до каждой из сторон треугольника равно радиусу этой окружности. Центром вписанной в треугольник окружности является точка пересечения биссектрис треугольника. От этой точки нужно провести перпендикуляр к любой стороне и это расстояние будет радиусом вписанной в треугольник окружности. 2) Окружность называется описанной вокруг треугольника, когда все его вершины лежат на окружности. Центром описанной окружности является точка пересечения срединных перпендикуляров к сторонам треугольника. Радиусом такой окружности будет расстояние от этого центра до вершин треугольника. 3) Вневписанная окружность — окружность, касающаяся одной стороны треугольника и продолжения двух других его сторон.Центр вневписанной окружности лежит на пересечении биссектрисы одного внутреннего угла и биссектрис внешних углов при двух других вершинах. Радиусом ее будет отрезок перпендикуляра, проведенного из центра окружности к стороне треугольника или к ее продолжению.Вневписанных окружностей у треугольника может быть 3 - к каждой стороне.
Сторона правильного шестиугольника равна радиусу описанной окружности, т.е. а = R.
Т.к. проведя все радиусы в шестиугольнике, вписанном в окружность, мы разобьем его на 6 равносторонних треугольников (см. рис.), а площадь получившегося треугольника можно найти по формуле
1/2 · R · R · sin60° = 1/2 · R² · √3/2 = R²√3/4
(полный круг составляет 360°, тогда угол при вершине равностороннего треугольника будет равен 60°, а sin60° = √3/2), то площадь шестиугольника будет равна:
6 · R²√3/4 = 3R²√3/2 = 3 · 2²√3/2 = 6√3 (см²)
ответ: 6√3 см².