2 2 2 2.2 2 22 2 2 2 2 2 2 2 2 2 2 22 2 2 2 2 2 2 2 2 2 2 22
Треугольники А0Д и В0С - подобные (уг.В0С = уг.А0Д как вертикальные; уг.СВ0 = уг.АД0 как внутренние накрест лежащие при параллельных прямых АД и ВС и секущей ВД).
Площадь тр-ка ВОС равна S1 = 0,5ВС·Н1
Площадь тр-ка АОД равна S2 = 0,5АД·Н2
При этом Н1:Н2 = к -коэфиициент подобия, а S1 : S2 = к²
S1 : S2 = 0,5ВС·Н1 : 0,5АД·Н2
к² = к· ВС: АД
к = 9/16
Итак, нашли коэффициент подобия.
Из подобия тех же тр-ков следует, что ОВ:ОД = 9/16, но ОД = АС - ОВ и
ОВ: (АС - ОВ) = 9/16
16·ОВ = 9·(АС - ОВ)
16·ОВ = 9·АС - 9·ОВ
25·ОВ = 9·АС
ОВ = 9·АС/25 = 9·18:25 = 6,48
ответ: ОВ = 6,48см
1) размеры коробочки должны быть 12 см х 12 см х 3 см; 2) наибольший объём коробочки 432 см³.
Объяснение:
Очевидно, что при одном и том же периметре основания 48 см максимальная площадь будет у квадрата со стороной 48 : 4 = 12 см, т.к., уменьшая одну из сторон квадрата на величину х и добавляя эту же величину х к другой стороне, мы будем получать меньшую площадь:
(12 - х ) (12 + х) = 12² - х² (разность квадратов двух чисел), то есть от площади 144 см² будем отнимать х². Например, при х = 2 см, стороны соответственно будут равны 10 см и 14 см, а площадь 140 см², что 2² меньше площади квадрата.
Таким образом, чтобы команда победила, размеры коробочки должны быть: 12 см х 12 см х 3 см.
Из этого следует, что наибольший объём коробочки равен:
12 · 12 · 3 = 432 см³
ответ: 1) размеры коробочки должны быть 12 см х 12 см х 3 см; 2) наибольший объём коробочки 432 см³.
скорее всего 2 но точно не 1