Треугольник АВС, уголС=90, tgA=0,75, СР-высота на АВ, , из точки О проводим перпендикуляры ОН и ОК в точки касания на РС и АР, ОК=ОН радиус вписанной окружности в АРС=4, КРНО-квадрат КР=РН=ОН=ОК=4, АК=х, АР=х+4, СР=АР*tgA=(х+4)*0,75=0,75х+3, sinA=tgA/корень(1+tgA в квадрате)=0,75/корень(1+0,5625)=0,75/1,25=0,6, АС=СР/sinA=(0,75х+3)/0,6=1,25х+5, радиус=(АР+СР-АС)/2=(х+4+0,75х+3-1,25х-5)/2=(0,5х+2)/2, 4=(0,5х+2)2, 8=0,5х+2, х=12=АК, АР=4+12=16, СР=0,75*12+3=12, АС=1,25*12+5=20, ВС=АС*tgA=20*0,75=15, АВ=ВС/sinA=15/0,6=25, радиус вписанной в АВС=(АС+ВС-АВ)/2=(20+15-25)/2=5
Вектор CM=2\3*вектор CL
Вектор CB=вектор CA+вектор AB=-вектор AC+вектор AB
Вектор CD=вектор CA+вектор AD=-вектор AC+вектор AD
Вектор EM=вектор EС+вектор СM=1\2*вектор AC+2\3 *вектор CL=1\2*вектор AC+2\3*1\2*(вектор CB+ вектор CD)= 1\2*вектор AC+1\3*(вектор CB+ вектор CD)=1\2*вектор AC+1\3*(-вектор AC+вектор AB-вектор AC+вектор AD)=
=-1\6 *вектор AC+1\3*вектор AB+1\3*вектор AD
ответ: -1\6 *вектор AC+1\3*вектор AB+1\3*вектор AD